利用深度学习病历分析前沿进展

邓侃博士又一力作,看深度学习如何让电子病历分析取得突破:Word2Vec、AutoEncoder让文字转换为张量,有助于更精准的预测;医学知识图谱,让我们能够清晰、量化地定义疾病表型;将图像也编码成张量,构建统一的患者画像,完整表达病情描述,实现临床导航和发病预测……曾经是冷门中的冷门,正在迎来一...

2018-10-01 22:31:29

阅读数:160

评论数:0

谷歌传奇人物 Jeff Dean 联手顶级医学院,发表首篇电子病历 AI 论文

谷歌在ArXiv上公开了一篇论文,也很可能是谷歌使用深度学习模型在电子病历建模分析方面的首篇文章。这篇论文由“编译器从不警告Jeff,Jeff会警告编译器”的谷歌大脑高级研究员Jeff Dean率队,联合了UCSF、Stanford、UChicago等知名机构的众多大牛。 论文地址:https:...

2018-10-01 22:29:28

阅读数:173

评论数:0

word2vec 中的数学原理详解 基于 Negative Sampling 的模型 ##有监督还是无监督问题解答?

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包...

2018-06-29 17:13:47

阅读数:368

评论数:0

神经网络结构在命名实体识别(NER)中的应用

近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结构在NER中也取得了不错的效果。最近,我也阅读学习了一系列使用神经网络结构进行NER的相关论文,在此进行一下...

2018-06-25 14:43:03

阅读数:177

评论数:0

Chatbot中的填槽(Slot Filling)

以下内容是学习了@我偏笑发布在公众号hanniman文章后,加上自己观点重新输出配图的文章原文链接:http://t.cn/RE0FkgD跳槽,吐槽,匹诺曹都听过,这个填槽,emmmm,黑人问号脸???写到这吐槽下,本来只是想写下填槽的过程,后来发现这东西不理解chatbot的对话系统的话,没法讲...

2018-06-21 13:57:57

阅读数:1048

评论数:3

机器学习保险行业问答开放数据集资料汇总

机器学习保险行业问答开放数据集: 2. 使用案例9条回复在上一篇文章中,介绍了数据集的设计,该语料可以用于研究和学习,从规模和质量上,是目前中文问答语料中,保险行业垂直领域最优秀的语料,关于该语料制作过程可以通过语料主页了解,本篇的主要内容是使用该语料实现一个简单的问答模型,并且给出准确度和损失函...

2018-06-21 13:32:11

阅读数:203

评论数:0

QA问答系统中的深度学习技术实现

应用场景智能问答机器人火得不行,开始研究深度学习在NLP领域的应用已经有一段时间,最近在用深度学习模型直接进行QA系统的问答匹配。主流的还是CNN和LSTM,在网上没有找到特别合适的可用的代码,自己先写了一个CNN的(theano),效果还行,跟论文中的结论是吻合的。目前已经应用到了我们的产品上。...

2018-06-06 16:49:16

阅读数:274

评论数:0

DL4NLP —— seq2seq+attention机制的应用:文档自动摘要(Automatic Text Summarization)

两周以前读了些文档自动摘要的论文,并针对其中两篇( [2] 和 [3] )做了presentation。下面把相关内容简单整理一下。      文本自动摘要(Automatic Text Summarization)就是说在不改变文档原意的情况下,利用计算机程序自动地总结出文档的主要内容。自动摘要...

2018-06-06 15:20:33

阅读数:325

评论数:0

#####@@@#好好好好#####最全知识图谱介绍:关键技术、开放数据集、应用案例汇总

1 知识图谱构建技术本节首先给出知识图谱的技术地图,然后介绍知识图谱构建的关键技术,包括关系抽取技术、知识融合技术、实体链接技术和知识推理技术。1.1 知识图谱技术地图构建知识图谱的主要目的是获取大量的、让计算机可读的知识。在互联网飞速发展的今天,知识大量存在于非结构化的文本数据、大量半结构化的表...

2018-06-06 01:38:01

阅读数:616

评论数:0

[NLP] MXnet与TensorFlow的自然语言处理应用

Introduction of NLP自然语言处理(英语:Natural Language Processing,简称NLP)是人工智能和语言学领域的分支学科。在此领域中探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言,而自然语言理解...

2018-06-05 16:42:37

阅读数:165

评论数:0

Spark 2.1.0 入门:特征抽取–Word2Vec(Python版)

Word2Vec 是一种著名的 词嵌入(Word Embedding) 方法,它可以计算每个单词在其给定语料库环境下的 分布式词向量(Distributed Representation,亦直接被称为词向量)。词向量表示可以在一定程度上刻画每个单词的语义。如果词的语义相近,它们的词向量在向量空间中...

2018-06-05 16:15:59

阅读数:153

评论数:0

####好好好#####word2vec前世今生

word2vec前世今生2013年,Google开源了一款用于词向量计算的工具——word2vec,引起了工业界和学术界的关注。首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练;其次,该工具得到的训练结果——词向量(word embedding),可以很好地度量词与词之间...

2018-06-04 00:23:20

阅读数:72

评论数:0

######好好好好######NLP现代情感分析方法

情感分析(Sentiment analysis)是自然语言处理(NLP)方法中常见的应用,尤其是以提炼文本情绪内容为目的的分类。利用情感分析这样的方法,可以通过情感评分对定性数据进行定量分析。虽然情感充满了主观性,但情感定量分析已经有许多实用功能,例如企业藉此了解用户对产品的反映,或者判别在线评论...

2018-06-03 02:24:34

阅读数:179

评论数:0

基于LSTM搭建一个文本情感分类的深度学习模型:准确率往往有95%以上

基于情感词典的文本情感分类传统的基于情感词典的文本情感分类,是对人的记忆和判断思维的最简单的模拟,如上图。我们首先通过学习来记忆一些基本词汇,如否定词语有“不”,积极词语有“喜欢”、“爱”,消极词语有“讨厌”、“恨”等,从而在大脑中形成一个基本的语料库。然后,我们再对输入的句子进行最直接的拆分,看...

2018-06-02 08:47:40

阅读数:317

评论数:1

Word2Vec原理解析

终于彻底搞懂word2vec是什么了………….其实很简单,理解了之后再看之前写的稀里糊涂的代码有种豁然开朗的感觉。。先转载一篇给我Word2Vec解惑的文章:http://blog.csdn.net/mylove0414/article/details/616166...

2018-06-01 02:39:22

阅读数:1236

评论数:0

Tensorflow实现微博的评论情感分类模型

学习研究项目:基于微博评论的数据挖掘与情感分析Github地址:情感分类模型源码项目简介学习卷积神经网络,循环神经网络在实际环境下的应用,提升实践能力,了解深度学习在自然语言处理方面的进展cnn_for_text_classify具备较强的自动关键词提取能力,在酒店评论测试集上达到95%的准确率 ...

2018-06-01 02:03:31

阅读数:186

评论数:0

基于gensim的Wiki百科中文word2vec训练

Word2Vec简介Word2Vec是词(Word)的一种表示方式。不同于one-hot vector,word2vec可以通过计算各个词之间的距离,来表示词与词之间的相似度。word2vec提取了更多的特征,它使得具有相同上下文语义的词尽可能离得近一些,而不太相关的词尽可能离得较远一些。例如,【...

2018-05-30 00:07:47

阅读数:207

评论数:0

TensorFlow seq2seq解读

github链接注:1.2最新版本不兼容,用命令pip3 install tensorflow==1.0.0在translate.py文件里,是调用各种函数;在seq2seq_model.py文件里,是定义了这个model的具体输入、输出、中间参数是怎样的init,以及获取每个epoch训练数据g...

2018-05-28 23:51:32

阅读数:142

评论数:0

浅谈Attention-based Model【原理篇】

转载请标明出处:http://blog.csdn.net/wuzqchom/article/details/75792501计划分为三个部分: 浅谈Attention-based Model【原理篇】(你在这里) 浅谈Attention-based Model【源码篇】 浅谈Attention-b...

2018-05-27 22:15:15

阅读数:389

评论数:0

浅谈Attention-based Model【源码篇】

转载请标明出处:http://blog.csdn.net/wuzqchom/article/details/77918780源码不可能每一条都详尽解释,主要在一些关键步骤上加了一些注释和少许个人理解,如有不足之处,请予指正。计划分为三个部分: 浅谈Attention-based Model【原理篇...

2018-05-27 22:14:32

阅读数:183

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭