排序:
默认
按更新时间
按访问量

卷积神经网络_(1)卷积层和池化层学习

卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度...

2017-05-15 16:11:22

阅读数:3783

评论数:0

从机器学习谈起

在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。   在进入正...

2016-09-23 15:16:48

阅读数:251

评论数:0

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-03-基于Python的LeNet之LR(转)

原地址可以查看更多信息 本文主要参考于:Classifying MNIST digits using Logistic Regression  Python源代码(GitHub下载  CSDN免费下载)   0阶张量叫标量(scarlar);1阶张量叫向量(vector);2阶张量叫...

2016-09-14 15:51:04

阅读数:728

评论数:0

Convolution Neural Network (CNN) 原理与实现

本文结合Deep learning的一个应用,Convolution Neural Network 进行一些基本应用,参考Lecun的Document 0.1进行部分拓展,与结果展示(in Python)。 分为以下几部分: 1. Convolution(卷积) 2. Pooli...

2016-09-14 14:40:48

阅读数:259

评论数:0

卷及神经网络 原理介绍

卷积神经网络 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说...

2016-07-20 11:50:43

阅读数:1718

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭