word2vec 中的数学原理详解 基于 Negative Sampling 的模型 ##有监督还是无监督问题解答?

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包...

2018-06-29 17:13:47

阅读数:367

评论数:0

数据挖掘模型中的IV和WOE详解

特征选择 (feature_selection)特征选择 (feature_selection)[toc]本文主要参考sklearn(0.18版为主,部分0.17)的1.13节的官方文档,以及一些工程实践整理而成。  当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通...

2018-06-29 15:25:31

阅读数:496

评论数:0

python装饰器详解

“你会Python嘛?” “我会!” ‘那你给我讲下Python装饰器吧!’ “Python装饰器啊?我没用过哎” 简言之,python装饰器就是用于拓展原来函数功能的一种函数,这个函数的特殊之处在于它的返回值也是一个函数,使用python装饰器的好处就是在不用更改原函数的代码前提下给函数增加新的...

2018-06-29 14:54:16

阅读数:61

评论数:0

神经网络结构在命名实体识别(NER)中的应用

近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结构在NER中也取得了不错的效果。最近,我也阅读学习了一系列使用神经网络结构进行NER的相关论文,在此进行一下...

2018-06-25 14:43:03

阅读数:177

评论数:0

用户画像不应脱离社会关系,谈复杂网络的关键技术和应用实践

关注“大数据杂谈”公众号,点击“加群学习”,更多大牛一手技术分享等着你。大家好,我来自天云大数据公司,我叫马敬涛,主要从事数据科学应用方面的工作。今天我给大家分享的主题是“复杂网络理论及应用”,希望本次分享的内容能给大家带来一些启发,如果内容中有说的不妥的地方也请大家多多包涵并给予指教,多谢!复杂...

2018-06-22 16:38:45

阅读数:103

评论数:0

Slot Filling详细讲解

1. 从一个栗子开始 - Slot Filling 比如在一个订票系统上,我们的输入 “Arrive Taipei on November 2nd” 这样一个序列, 我们设置几个槽位(Slot),希望算法能够将关键词'Taipei'放入目的地(Destination)槽位, 将Novembe...

2018-06-21 14:30:46

阅读数:1652

评论数:0

Chatbot中的填槽(Slot Filling)

以下内容是学习了@我偏笑发布在公众号hanniman文章后,加上自己观点重新输出配图的文章原文链接:http://t.cn/RE0FkgD跳槽,吐槽,匹诺曹都听过,这个填槽,emmmm,黑人问号脸???写到这吐槽下,本来只是想写下填槽的过程,后来发现这东西不理解chatbot的对话系统的话,没法讲...

2018-06-21 13:57:57

阅读数:1033

评论数:3

机器学习保险行业问答开放数据集资料汇总

机器学习保险行业问答开放数据集: 2. 使用案例9条回复在上一篇文章中,介绍了数据集的设计,该语料可以用于研究和学习,从规模和质量上,是目前中文问答语料中,保险行业垂直领域最优秀的语料,关于该语料制作过程可以通过语料主页了解,本篇的主要内容是使用该语料实现一个简单的问答模型,并且给出准确度和损失函...

2018-06-21 13:32:11

阅读数:204

评论数:0

python2代码批量转为python3代码

由于python存在python2和python3两个主要的版本方向,经常会有将python2的代码转到python3的环境下运行的需求。尤其是跑一些神经网络的代码时有很多是在python2的环境下写的。在python3下运行会遇见很多不兼容,最常见的就是python3中print函数必须加()而...

2018-06-21 11:25:15

阅读数:115

评论数:0

MFCC(Mel 倒谱系数)

Mel倒谱系数Mel倒谱系数:MFCC Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient)的缩写是MFCC,Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系。Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征。...

2018-06-20 11:43:07

阅读数:116

评论数:0

ArangoDB教程: Python 10分钟

ArangoDB教程: Python 10分钟对于Python开发人员,有多种驱动程序可供使用,您可以在应用程序中操作和管理ArangoDB服务器和数据库。本教程是基于Tariq Daouda的 pyArango 驱动程序。您需要在主机上 安装 并启动ArangoDB,然后从Python包索引中安...

2018-06-19 01:30:00

阅读数:329

评论数:0

ArangoDB、Neo4j、OrientDB单机性能比较

系统信息图数据库版本信息图数据库版本备注Neo4J3.2 OrientDB2.2.x ArangoDB、3.1.19有密钥失效问题,导致无法下载成功server端Titan1.0.0需要集群,暂不分析OS&库信息OS:Ubuntu 16.04虚拟机VM12python3驱动...

2018-06-19 01:27:00

阅读数:508

评论数:0

MySQL中REGEXP正则表达式使用大全

以前我要查找数据都是使用like后来发现mysql中也有正则表达式了并且感觉性能要好于like,下面我来给大家分享一下mysql REGEXP正则表达式使用详解,希望此方法对大家有帮助。MySQL采用Henry Spencer的正则表达式实施,其目标是符合POSIX 1003.2。请参见附录C:感...

2018-06-14 16:07:43

阅读数:161

评论数:0

概率图模型(PGM)模式推断与概率图流

我们依然使用“学生网络”作为例子,如图1。 图1首先给出因果推断(Causal Reasoning)的直觉解释。可以算出来即学生获得好的推荐信的概率大约是0.5.但如果我们知道了学生的智商比较低,那么拿到好推荐信的概率就下降了:进一步,如果又同时知道了考试的难度很低,那么他拿到好的推荐信得概率又上...

2018-06-13 16:36:15

阅读数:142

评论数:1

揭秘 DeepMind 的关系推理网络

DeepMind 今天发表官博介绍了他们的两篇最新论文,称其都在理解“关系推理”这一挑战方面展示出了令人可喜的结果。一个是视觉互动网络 VIN,能够预测视觉场景中各个物体在未来几百步所处位置,另一个则是模块化的、具有关系推理能力的深度神经网络架构 RN,可以“即插即用”,提升其他深度神经网络结构(...

2018-06-13 15:04:04

阅读数:319

评论数:0

大规模知识图谱的构建、推理及应用

随着大数据的应用越来越广泛,人工智能也终于在几番沉浮后再次焕发出了活力。除了理论基础层面的发展以外,本轮发展最为瞩目的是大数据基础设施、存储和计算能力增长所带来的前所未有的数据红利。人工智能的进展突出体现在以知识图谱为代表的知识工程以及以深度学习为代表的机器学习等相关领域。未来伴随着深度学习对于大...

2018-06-12 23:24:42

阅读数:306

评论数:0

神经网络在关系抽取中的应用

一、关系抽取简介信息抽取的主要目的是将非结构化或半结构化描述的自然语言文本转化成结构化数据(Structuring),关系抽取是其重要的子任务,主要负责从文本中识别出实体(Entities),抽取实体之间的语义关系。如:句子“Bill Gates is the founder of Microso...

2018-06-12 22:16:24

阅读数:198

评论数:0

端到端的TTS深度学习模型tacotron(中文语音合成)

TACONTRON: A Fully End-to-End Text-To-Speech Synthesis Model通常的TTS模型包含许多模块,例如文本分析, 声学模型, 音频合成等。而构建这些模块需要大量专业相关的知识以及特征工程,这将花费大量的时间和精力,而且各个模块之间组合在一起也会产...

2018-06-12 00:37:43

阅读数:415

评论数:0

NLP专题论文解读:从Chatbot、NER到QA系统...

一、对话系统论文 | Affective Neural Response Generation链接 | http://www.paperweekly.site/papers/1043作者 | Jeffreygao1. 论文动机 论文来自华为诺亚方舟实验室。都说人工智能要有情感,能体会到人的喜怒哀乐...

2018-06-06 17:51:08

阅读数:196

评论数:0

QA问答系统中的深度学习技术实现

应用场景智能问答机器人火得不行,开始研究深度学习在NLP领域的应用已经有一段时间,最近在用深度学习模型直接进行QA系统的问答匹配。主流的还是CNN和LSTM,在网上没有找到特别合适的可用的代码,自己先写了一个CNN的(theano),效果还行,跟论文中的结论是吻合的。目前已经应用到了我们的产品上。...

2018-06-06 16:49:16

阅读数:273

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭