关于主题挖掘,LDA(Latent Dirichlet Allocation)已经得到了充分的应用。本文是我对自己读过的相关文章的总结。
1. 《LDA数学八卦》http://pan.baidu.com/s/18KUBG
把标准LDA的由来讲解得通俗易懂,细致入微。真的是了解LDA的最佳入门读物。
Gamma函数:
通过分部积分可以推导其具有递归性质 ,因此Gamma函数可以当成是阶乘在实数集上的拓展。具有性质:
。这个性质很重要,在后来的LDA推理中会用到。
二项分布:
泊松分布:
Gamma分布:,若做变换x=βt,得到如下分布函数
LDA(Latent Dirichlet Allocation)相关论文阅读小结
最新推荐文章于 2024-09-25 21:01:29 发布
本文是对LDA(Latent Dirichlet Allocation)的深入解析,包括LDA的数学基础、与二项分布、泊松分布、Gamma分布、Beta分布和Dirichlet分布的关系,以及MCMC采样中的Gibbs Sampling算法。LDA模型通过Doc-Topic和Topic-Word骰子的概念解释,展示了如何用于文档主题分析,并详细描述了训练过程和新文档的主题预测。

最低0.47元/天 解锁文章
相关论文阅读小结&spm=1001.2101.3001.5002&articleId=50777483&d=1&t=3&u=df3a256b38b745a495b316884413981a)
4337

被折叠的 条评论
为什么被折叠?



