深度优先搜索,堆栈实现;
广度优先搜索,队列实现
That heavily depends on the structure of the search tree and the number and location of solutions. If you know a solution is not far from the root of the tree, a breadth first search (BFS) might be better. If the tree is very deep and solutions are rare, depth first search (DFS) might take an extremely long time, but BFS could be faster. If the tree is very wide, a BFS might need too much memory, so it might be completely impractical. If solutions are frequent but located deep in the tree, BFS could be impractical. If the search tree is very deep you will need to restrict the search depth for depth first search (DFS), anyway (for example with iterative deepening).--------------------------------------------------------------------------------------BFS is going to use more memory depending on the branching factor… however, BFS is a complete algorithm… meaning if you are using it to search for something in the lowest depth possible, BFS will give you the optimal solution. BFS space complexity is O(b^d) … the branching factor raised to the depth (can be A LOT of memory).DFS on the other hand, is much better about space however it may find a suboptimal solution. Meaning, if you are just searching for a path from one vertex to another, you may find the suboptimal solution (and stop there) before you find the real shortest path. DFS space complexity is O(|V|) … meaning that the most memory it can take up is the longest possible path.
They have the same time complexity.