递归算法--斐波那契数列

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u010183728/article/details/81238401

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。n<=39

很容易我们想到使用递归求解:

public class Solution {
    public int Fibonacci(int n) {
        if(n == 0)
            return 0;
        if(n == 1)
            return 1;
        return Fibonacci(n-2) + Fibonacci(n-1);
    }
}

当n比较大时,可以明显感觉算法运行速度比较慢,这是由于上述返回代码中使用了两层递归,使用递归的思想是好的,但是这里我们可以用迭代明显改善算法运行效率,用空间换时间:

public class Solution {
    public int Fibonacci(int n) {
        if(n < 2)
            return n;
        int f = 0, g = 1;
        int result = 0;
        for(int i = 1; i < n; i++){
            result = f + g;
            f = g;
            g = result;
        }
        return result;
    }
}

问题变形

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

分析

这里写图片描述
对于n步操作,可以分两种情况讨论:
1. 第一步这样覆盖
这里写图片描述
那么f(n) = f(n-1);
2. 第一步这么覆盖
这里写图片描述
那么下一步只有可能这么覆盖
这里写图片描述
那么f(n) = f(n-2)
所以f(n) = f(n-1) + f(n-2)

public class Solution {
    public int RectCover(int target) {
      if(target  <= 1){
            return 1;
        }
        if(target*2 == 2){
            return 1;
        }else if(target*2 == 4){
            return 2;
        }else{
            return RectCover((target-1))+RectCover(target-2);
        }
    }
}
展开阅读全文

没有更多推荐了,返回首页