Titanic : Machine Learning from Disaster Titanic: Machine Learning from DisasterRMS泰坦尼克号的沉没是历史上最臭名昭着的沉船之一。 1912年4月15日,泰坦尼亚号在首次航行中,与冰山相撞后沉没,在2224名乘客和船员中造成1502人死亡。 这场耸人听闻的悲剧震惊了国际社会,并为船舶制定了更好的安全规定。造成这样的生命损失的原因之一是乘客和船员没有足够的救生艇。 虽然在沉船事件幸存有一些运气,但有些
Deep Convolutional Nets for Semantic Image Segmentation with Deep Gaussian CRFs 1、会议论文汇报PPT 2、中文演讲稿各位教授,大家好我汇报的题目是Deep Convolutional Nets for Semantic Image Segmentation with Deep Gaussian CRFs,我将从以下四个方面介绍我的研究成果,第一方面介绍我们需要解决难题和我们用到的基本方法,第二方面和第三方面分别介绍
Killers in Kaggle Competition Killers in Kaggle Competition1. XGBoost Modelimport pandas as pd'''对比随机决策森林以及XGBoost模型对泰坦尼克号上的乘客是否生还的预测能力''''''*************************************************************************************
Unsupervised Learning Model-Reducing Dimension Unsupervised Learning Model-Reducing DimensionAuthor: Xie Zhong-zhao1. PCAimport numpy as np#初始化一个2*2的线性相关矩阵M = np.array([[1,2],[2,4]])#计算2*2线性相关矩阵的秩print(np.linalg.matrix_rank(M,tol=None))import pa
Unsupervised Learning Model-Dada Clustering Unsupervised Learning Model-Dada Clustering1. Data Clustering#导入数学运算,作图以及数据分析import numpy as npimport matplotlib.pyplot as pltimport pandas as pd'''K-means算法在手写体数字图像数据上的使用示例'''#使用pandas分别读取训练数据和测试
Supervised Learning Model Regression Prediction Supervised Learning Model-Regression PredictionAuthor: Xie Zhong-zhao1. Linear Regression#从sklearn.datasets导入波士顿房价数据读取器from sklearn.datasets import load_boston#读取房价数据到存储变量boston中boston = load_boston
Supervised Learning Model-Classification Learning Supervised Learning Model-Classification Learning1. Logisitic Regression#导入pandas与numpy工具包import pandas as pdimport numpy as np#创建特征列表column_names = ['sample code number','clump thickness','uniformi
Skills of debugging model Skills of debugging modelAuthor: Xie Zhong-zhao1. 特征提升1.1 Feature Extractionfrom sklearn.feature_extraction import DictVectorizer'''举个栗子,使用DictVectorizer对特征进行抽取和向量化'''measurements = [{'city':'Duba
Titanic Project Kaggle Competition Titanic Project - Kaggle CompetitionAuthor: Xie Zhong-zhaoimport pandas as pd'''分别对训练和测试的数据从本地进行读取'''train = pd.read_csv('train.csv')test = pd.read_csv('test.csv')'''先分别输出训练和测试数据的基本信息,这是一个好习惯,可以对数
MINIST Project - Kaggle Competition MINIST Project - Kaggle Competitionimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport matplotlib.cm as cmimport tensorflow as tf'''设置变量的值'''Learning_rate = 1e-4Training_
Pandas学习总结(上) Python科学计算-Pandas(上)Author:Xie Zhong-zhao Date: 2017/8/8 Running Environment: Python3.5
Matplotlib学习总结 Python科学计算-MatplotlibAuthor:Xie Zhong-zhao Date: 2017/8/3 Running Environment: Python3.51、Introduction to Matplotlib and basic lineimport matplotlib.pyplot as pltfig = plt.figure(figsize = (10,6))ax1
Numpy学习教程 Python科学计算-NumpyAuthor:Xie Zhong-zhao Date: 2017/8/3 Running Environment: Python3.5Numpy-多维数组(上)1.创建numpy数组import numpy as npv1 = np.array([1,2,3,4])print(v1)type(v1)print(v1.shape)print(v1.size)