hdu3061 Battle 最大流最小割

由于小白同学近期习武十分刻苦,很快被晋升为天策军的统帅。而他上任的第一天,就面对了一场极其困难的战斗:
据侦查兵回报,前方共有N座城池,考虑到地势原因,最终得到一个结论:攻占某些城池之前必须攻占另外一些城池。
事实上,可以把地图看做是一张拓扑图,而攻占某个城池,就意味着必须先攻占它的所有前驱结点。
小白还做了一份调查,得到了攻占每个城池会对他的兵力产生多少消耗(当然也可能会得到增长,因为每攻占一个城池,便可以整顿军队,扩充兵力,天策军的兵力十分庞大,如果不考虑收益,他们可以攻取所有的城池)。

现在请你帮小白统帅做一份战斗计划,挑选攻打哪些城市,使得天策军在战斗过后军容最为壮大。

题解:将图画出来,可以发现这是一个节点有权值的最大权闭合图,有关最大权闭合图详见07年集训队论文《最小割模型在信息学中的应用》

将图构造成最大流可解。(vector注意释放空间啊!)

#include<cstdlib>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#define LL long long
#define maxn 250010
#define INF 1000000000
using namespace std;
struct edge{
    int to,cap;
    unsigned long rev;
};
vector<edge>G[maxn];
int n,m;
int level[maxn];
int iter[maxn];
void Add(int from,int to,int cap)
{
    G[from].push_back((edge){to ,cap ,G[to].size()});
    G[to].push_back((edge){from ,0 ,G[from].size()-1});
}
void bfs(int s)
{
    queue<int>que;
    memset(level,-1,sizeof(level));
    que.push(s);
    level[s]=0;
    while(!que.empty())
    {
        int u=que.front();
        que.pop();
        for(int i=0;i<G[u].size();i++)
        {
            edge &e=G[u][i];
            if(e.cap>0&&level[e.to]<0)
            {
                level[e.to]=level[u]+1;
                que.push(e.to);
            }
        }
    }
}
int dfs(int s,int t,int f)
{
    if(s==t)
        return f;
    for(int &i=iter[s];i<G[s].size();i++)
    {
        edge &e=G[s][i];
        if(e.cap>0&&level[s]<level[e.to])
        {
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0)
            {
                e.cap-=d;
                G[e.to][e.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
}
int max_flow(int s,int t)
{
    int flow=0;
    for(;;)
    {
        bfs(s);
        if(level[t]<0)
            return flow;
        memset(iter,0,sizeof(iter));
        int f;
        while((f=dfs(s,t,INF))>0)
        {
            flow+=f;
        }
    }
}
int main()
{
    while(cin>>n>>m)
    {
        int s,t,sum;
        s=0,t=n+1,sum=0;
        for(int i=0;i<=n+1;i++)
            G[i].clear();
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            if(x>0)
            {
                Add(s,i,x);
                sum+=x;
            }
            else
                Add(i,t,-x);
        }
        for(int i=1;i<=m;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            Add(x,y,INF);
        }
        int flow=max_flow(0,n+1);
        cout<<sum-flow<<endl;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值