由于小白同学近期习武十分刻苦,很快被晋升为天策军的统帅。而他上任的第一天,就面对了一场极其困难的战斗:
据侦查兵回报,前方共有N座城池,考虑到地势原因,最终得到一个结论:攻占某些城池之前必须攻占另外一些城池。
事实上,可以把地图看做是一张拓扑图,而攻占某个城池,就意味着必须先攻占它的所有前驱结点。
小白还做了一份调查,得到了攻占每个城池会对他的兵力产生多少消耗(当然也可能会得到增长,因为每攻占一个城池,便可以整顿军队,扩充兵力,天策军的兵力十分庞大,如果不考虑收益,他们可以攻取所有的城池)。
据侦查兵回报,前方共有N座城池,考虑到地势原因,最终得到一个结论:攻占某些城池之前必须攻占另外一些城池。
事实上,可以把地图看做是一张拓扑图,而攻占某个城池,就意味着必须先攻占它的所有前驱结点。
小白还做了一份调查,得到了攻占每个城池会对他的兵力产生多少消耗(当然也可能会得到增长,因为每攻占一个城池,便可以整顿军队,扩充兵力,天策军的兵力十分庞大,如果不考虑收益,他们可以攻取所有的城池)。
现在请你帮小白统帅做一份战斗计划,挑选攻打哪些城市,使得天策军在战斗过后军容最为壮大。
题解:将图画出来,可以发现这是一个节点有权值的最大权闭合图,有关最大权闭合图详见07年集训队论文《最小割模型在信息学中的应用》
将图构造成最大流可解。(vector注意释放空间啊!)
#include<cstdlib>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#define LL long long
#define maxn 250010
#define INF 1000000000
using namespace std;
struct edge{
int to,cap;
unsigned long rev;
};
vector<edge>G[maxn];
int n,m;
int level[maxn];
int iter[maxn];
void Add(int from,int to,int cap)
{
G[from].push_back((edge){to ,cap ,G[to].size()});
G[to].push_back((edge){from ,0 ,G[from].size()-1});
}
void bfs(int s)
{
queue<int>que;
memset(level,-1,sizeof(level));
que.push(s);
level[s]=0;
while(!que.empty())
{
int u=que.front();
que.pop();
for(int i=0;i<G[u].size();i++)
{
edge &e=G[u][i];
if(e.cap>0&&level[e.to]<0)
{
level[e.to]=level[u]+1;
que.push(e.to);
}
}
}
}
int dfs(int s,int t,int f)
{
if(s==t)
return f;
for(int &i=iter[s];i<G[s].size();i++)
{
edge &e=G[s][i];
if(e.cap>0&&level[s]<level[e.to])
{
int d=dfs(e.to,t,min(f,e.cap));
if(d>0)
{
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
for(;;)
{
bfs(s);
if(level[t]<0)
return flow;
memset(iter,0,sizeof(iter));
int f;
while((f=dfs(s,t,INF))>0)
{
flow+=f;
}
}
}
int main()
{
while(cin>>n>>m)
{
int s,t,sum;
s=0,t=n+1,sum=0;
for(int i=0;i<=n+1;i++)
G[i].clear();
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
if(x>0)
{
Add(s,i,x);
sum+=x;
}
else
Add(i,t,-x);
}
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
Add(x,y,INF);
}
int flow=max_flow(0,n+1);
cout<<sum-flow<<endl;
}
}