Bomb
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 4669 Accepted Submission(s): 1628
Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.
The input terminates by end of file marker.
The input terminates by end of file marker.
Output
For each test case, output an integer indicating the final points of the power.
Sample Input
3 1 50 500
Sample Output
0 1 15AC代码及详细解释:HintFrom 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499", so the answer is 15./* 题意:求1~N中含有数字49的个数 1 <= N <= 2^63-1 方法:数位DP dp[len][0] 代表长度为len不含49的方案数 dp[len][1] 代表长度为len不含49但是以9开头的数字的方案数 dp[len][2] 代表长度为len含有49的方案数 状态转移如下 dp[i][0] = dp[i-1][0] * 10 - dp[i-1][1]; //如果不含49且,在前面可以填上0-9 但是要减去dp[i-1][1] 因为4会和9构成49 dp[i][1] = dp[i-1][0]; //这个直接在不含49的数上填个9就行了 dp[i][2] = dp[i-1][2] * 10 + dp[i-1][1]; //已经含有49的数可以填0-9,或者9开头的填4 写完动态转移方程后就把N从高位到低位一个一个统计了 在统计到某一位的时候,加上 dp[i-1][2] * digit[i] 是显然没问题,这是因为这一位可以填【0,(digit[i]-1)】这个区间的数 若这一位之前挨着49,那么加上 dp[i-1][0] * digit[i] 也是显然OK。 若这一位之前没有挨着49,但是digit[i]比4大,那么当这一位填比digit[i]小的4的时候,就得加上dp[i-1][1](以9开头的数字的方案数) */ #include<iostream> #include<cstdio> #include<cstdlib> #include<algorithm> #include<cmath> #include<map> #include<cstring> #include<string> #include<set> #include<stack> #include<queue> #include<iomanip> const int MAX=21; __int64 dp[MAX][3]; int digit[MAX]; using namespace std; int main() { memset(dp,0,sizeof(dp)); dp[0][0]=1; for(int i=1;i<20;i++) { dp[i][0]=dp[i-1][0]*10-dp[i-1][1]; dp[i][1]=dp[i-1][0]; dp[i][2]=dp[i-1][2]*10+dp[i-1][1]; } int t,len,i,j,p,before; __int64 sum,n; cin>>t; while(t--) { cin>>n; memset(digit,0,sizeof(digit)); len=0; sum=0; before=0; while(n) { digit[++len]=n%10; n/=10; } bool p=false; for(i=len;i>=1;i--) { sum += dp[i-1][2] * digit[i]; if(p) sum += dp[i-1][0] * digit[i]; if(!p && digit[i] >4) sum += dp[i-1][1]; if(before == 4 && digit[i] == 9) p = true; before = digit[i]; } if(p) sum++; cout<<sum<<endl; } return 0; }