POJ1329-Circle Through Three Points

Circle Through Three Points
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 3262 Accepted: 1384

Description

Your team is to write a program that, given the Cartesian coordinates of three points on a plane, will find the equation of the circle through them all. The three points will not be on a straight line.
The solution is to be printed as an equation of the form
	(x - h)^2 + (y - k)^2 = r^2				(1)

and an equation of the form
	x^2 + y^2 + cx + dy - e = 0				(2)

Input

Each line of input to your program will contain the x and y coordinates of three points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers separated from each other by one or more spaces.

Output

Your program must print the required equations on two lines using the format given in the sample below. Your computed values for h, k, r, c, d, and e in Equations 1 and 2 above are to be printed with three digits after the decimal point. Plus and minus signs in the equations should be changed as needed to avoid multiple signs before a number. Plus, minus, and equal signs must be separated from the adjacent characters by a single space on each side. No other spaces are to appear in the equations. Print a single blank line after each equation pair.

Sample Input

7.0 -5.0 -1.0 1.0 0.0 -6.0
1.0 7.0 8.0 6.0 7.0 -2.0

Sample Output

(x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0

(x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0

Source

//AC代码
/*
题意:有三个点A,B,C组成三角形,求这三角形的外接圆用两个公式表示
三角形的外接圆圆心:任意两条边的垂直平分线的交点,半径该交点到任意三个顶点的距离

另外此题有直接求外接圆的圆心和半径的公式:http://blog.csdn.net/ecjtu_yuweiwei/article/details/38350587
我是直接模拟
*/
#include<iostream>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<map>
#include<cstdlib>
#include<cmath>
#include<vector>
#define LL long long
#define IT __int64
#define zero(x) fabs(x)<eps
#define mm(a,b) memset(a,b,sizeof(a))
const int INF=0x7fffffff;
const double inf=1e8;
const double eps=1e-10;
const double PI=acos(-1.0);
const int Max=20001;
using namespace std;
int sign(double x)
{
    return (x>eps)-(x<-eps);
}
typedef struct Node
{
    double x;
    double y;
    Node(const double &_x=0, const double &_y=0) : x(_x), y(_y) {}
    void input()
    {
        cin>>x>>y;
    }
    void output()
    {
        cout<<x<<" "<<y<<endl;
    }
}point;
point A,B,C;
point AB,BC;
point Center;
double k1,k2,k3,k4,R;
double b1,b2;
double xmult(point p0,point p1,point p2)
{
	return(p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double dmult(point p0,point p1,point p2)
{
	return(p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
}
double Distance(point p1,point p2)// 返回两点之间欧氏距离
{
	return( sqrt( (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y) ) );
}
double slope(point u,point v)
{
    if(sign(v.x-u.x)==0)
        return INF;
    else
        return (v.y-u.y)/(v.x-u.x);
}
int main()
{
    int n,m,i,j;
    while(cin>>A.x>>A.y)
    {
        B.input();
        C.input();
        AB.x=(A.x+B.x)/2;
        AB.y=(A.y+B.y)/2;
        BC.x=(B.x+C.x)/2;
        BC.y=(B.y+C.y)/2;
        k1=slope(A,B);
        k2=slope(B,C);
        Center.x=INF;
        Center.y=INF;
        if(k1==INF)
        {
            k3=0;
            Center.y=AB.y;
        }
        if(k2==INF)
        {
            k4=0;
            Center.y=BC.y;
        }
        if(k1==0)
        {
            k3=INF;
            Center.x=AB.x;
        }
        if(k2==0)
        {
            k4=INF;
            Center.x=BC.x;
        }
        if(Center.x!=INF&&Center.y!=INF)
        {
            //cout<<"111"<<endl;
            R=Distance(Center,A);
            char a,b,c;
            double res;
            res=pow(Center.x,2)+pow(Center.y,2)-pow(R,2);
            if(Center.x<0)
                a='+';
            else
                a='-';
            if(Center.y<0)
                b='+';
            else
                b='-';
            if(res<0)
                c='-';
            else
                c='+';
            cout<<"(x "<<a<<" ";
            cout<<setprecision(3)<<setiosflags(ios::fixed)<<fabs(Center.x)<<")^2 + (y "<<b<<" ";
            cout<<setprecision(3)<<setiosflags(ios::fixed)<<fabs(Center.y)<<")^2 = ";
            cout<<setprecision(3)<<setiosflags(ios::fixed)<<R<<"^2"<<endl;

            cout<<"x^2 + y^2 "<<a<<" "<<fabs(2*Center.x)<<"x "<<b<<" "<<fabs(2*Center.y)<<"y "<<c<<" "<<fabs(res)<<" = 0"<<endl;
        }
        else
        {
            if(Center.x==INF&&Center.y==INF)
            {
                k3=-1.0/k1;
                k4=-1.0/k2;
                //cout<<"222"<<endl;
               // AB.output();
               // BC.output();
                b1=AB.y-k3*AB.x;
                b2=BC.y-k4*BC.x;
                //cout<<k3<<" "<<k4<<" "<<b1<<" "<<b2<<endl;
                Center.x=(b2-b1)/(k3-k4);
                Center.y=k3*Center.x+b1;
                //cout<<Center.x<<" "<<Center.y<<endl;
                R=Distance(Center,A);
                //cout<<"ok:: "<<Distance(Center,B)<<" "<<Distance(Center,C)<<endl;
                char a,b,c;
                double res;
                res=pow(Center.x,2)+pow(Center.y,2)-pow(R,2);
                if(Center.x<0)
                    a='+';
                else
                    a='-';
                if(Center.y<0)
                    b='+';
                else
                    b='-';
                if(res<0)
                    c='-';
                else
                    c='+';
                cout<<"(x "<<a<<" ";
                cout<<setprecision(3)<<setiosflags(ios::fixed)<<fabs(Center.x)<<")^2 + (y "<<b<<" ";
                cout<<setprecision(3)<<setiosflags(ios::fixed)<<fabs(Center.y)<<")^2 = ";
                cout<<setprecision(3)<<setiosflags(ios::fixed)<<R<<"^2"<<endl;

                cout<<"x^2 + y^2 "<<a<<" "<<fabs(2*Center.x)<<"x "<<b<<" "<<fabs(2*Center.y)<<"y "<<c<<" "<<fabs(res)<<" = 0"<<endl;
            }
            else
            {
                if(Center.x==INF&&Center.y!=INF)
                {
                    if(k3==0)
                    {
                        k4=-1.0/k2;
                        b2=BC.y-k4*BC.x;
                        Center.x=(Center.y-b2)/k4;
                    }
                    if(k4==0)
                    {
                        k3=-1.0/k1;
                        b1=AB.y-k3*AB.x;
                        Center.x=(Center.y-b1)/k3;
                    }
                    //cout<<"222"<<endl;
                    //AB.output();
                    //BC.output();
                    //cout<<k3<<" "<<k4<<" "<<b1<<" "<<b2<<endl;
                    //Center.x=(b2-b1)/(k3-k4);

                    //cout<<Center.x<<" "<<Center.y<<endl;
                    R=Distance(Center,A);
                    //cout<<"ok:: "<<Distance(Center,B)<<" "<<Distance(Center,C)<<endl;
                    char a,b,c;
                    double res;
                    res=pow(Center.x,2)+pow(Center.y,2)-pow(R,2);
                    if(Center.x<0)
                        a='+';
                    else
                        a='-';
                    if(Center.y<0)
                        b='+';
                    else
                        b='-';
                    if(res<0)
                        c='-';
                    else
                        c='+';
                    cout<<"(x "<<a<<" ";
                    cout<<setprecision(3)<<setiosflags(ios::fixed)<<fabs(Center.x)<<")^2 + (y "<<b<<" ";
                    cout<<setprecision(3)<<setiosflags(ios::fixed)<<fabs(Center.y)<<")^2 = ";
                    cout<<setprecision(3)<<setiosflags(ios::fixed)<<R<<"^2"<<endl;

                    cout<<"x^2 + y^2 "<<a<<" "<<fabs(2*Center.x)<<"x "<<b<<" "<<fabs(2*Center.y)<<"y "<<c<<" "<<fabs(res)<<" = 0"<<endl;
                }
                else if(Center.x!=INF&&Center.y==INF)
                {
                    if(k3==INF)
                    {
                        k4=-1.0/k2;
                        b2=BC.y-k4*BC.x;
                        Center.y=k4*Center.x+b2;
                    }
                    if(k4==INF)
                    {
                        k3=-1.0/k1;
                        b1=AB.y-k3*AB.x;
                        Center.y=k3*Center.x+b1;
                    }
                    R=Distance(Center,A);
                    //cout<<"ok:: "<<Distance(Center,B)<<" "<<Distance(Center,C)<<endl;
                    char a,b,c;
                    double res;
                    res=pow(Center.x,2)+pow(Center.y,2)-pow(R,2);
                    if(Center.x<0)
                        a='+';
                    else
                        a='-';
                    if(Center.y<0)
                        b='+';
                    else
                        b='-';
                    if(res<0)
                        c='-';
                    else
                        c='+';
                    cout<<"(x "<<a<<" ";
                    cout<<setprecision(3)<<setiosflags(ios::fixed)<<fabs(Center.x)<<")^2 + (y "<<b<<" ";
                    cout<<setprecision(3)<<setiosflags(ios::fixed)<<fabs(Center.y)<<")^2 = ";
                    cout<<setprecision(3)<<setiosflags(ios::fixed)<<R<<"^2"<<endl;

                    cout<<"x^2 + y^2 "<<a<<" "<<fabs(2*Center.x)<<"x "<<b<<" "<<fabs(2*Center.y)<<"y "<<c<<" "<<fabs(res)<<" = 0"<<endl;
                }
            }
        }
        cout<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值