良言的博客

不积跬步,无以至千里

关于SVM的难点解读

SVM的最优化公式

       在各种对SVM的讲解中,有一个知识点都讲得不够透彻:SVM的目标函数是最大化支持向量的几何间隔,但怎么最后就变成了最小化法向量(斜率)了呢?

       可以想像一下,一个超平面,斜率和截距以相同的倍数增大,这个超平面是不变的。也就是说,一个固定的超平面的参数却是不固定的。在我们求最优超平面时,解空间也就变成了无穷大。我们当然可以通过预先给这些参数设定一些约束来缩小解空间。那么,这个约束就是:令支持向量的函数间隔=1。

       这个约束的优点有两方面:

  • 在超平面都未确定的情况下,当然谁也不知道支持向量是哪些向量,支持向量的几何间隔也只有一个形式化表达,更别谈“最大化支持向量的几何间隔”该如何具体表达出来了。但有了以上约束,“支持向量的几何间隔”的表达中,谁是支持向量已经不重要了,唯一和样本相关的部分,也就是函数间隔,已变为了1.
  • 其它样本的函数间隔要大于支持向量的函数间隔,这是唯一要满足的约束。此时,这个问题的解空间已经不是无穷大了,有了有意义的解空间。

支持向量回归

      本质上跟SVM没什么关系,名字较易让人困惑。但libSVM里都加入了这个功能,不得不说一下。其实是求解一个线性回归问题,但由于对斜率增加了最小范数要求,最优化问题形式上和SVM很像,最后求出的线性函数表达式也跟SVM很像,出现了美妙的与支持向量的内积形式。


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010318961/article/details/51565459
文章标签: 计算机视觉 svm
个人分类: 算法解读
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

关于SVM的难点解读

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭