这是CNN复兴的开创之作,个人认为比Hinton老爷子Science上那篇具有更重要的实际意义。有人问CNN怎么调参,其实大部分的答案这篇论文里都能找到。深度CNN最佳启蒙之作,没有之一。
技术概括
- 将浅层CNN扩展到8层的深度CNN,扩展了CNN的learning capacity。
- 对CNN进行多项改造,可以加快收敛速度、防过拟合、多卡并行。
- 数据扩充方法。
- 调参理论和方法。
一些值得反思的细节
- 网络参数数量:6千万;神经元数量:65万。
- 输入图像需固定大小:256*256(实际上是224*224,裁剪后)。后续MSRA提出了可变化输入大小的网络SPPNet。
- 图像每个像素要减去各通道均值。数值范围正则化的手段。后面数据扩充时通过PCA的颜色扰动时的均值就已经减好了。实际重要性不明,GoogleNet似乎并未采用(见caffe默认参数)。
- ReLU是传统S型激活函数的改进,值域无界,即非饱和函数。作者说能够更快收敛。
- 多卡并行训练将立方体卷积的卷积核那一维平分两半,在这一维度上,前一层只有部分神经元与后一层的部份神经元相连(具体是哪部分和哪部分相连,网上有解读)。为多卡并行设计,如此设计没太多参考价值。
- 三种操作的先后顺序:ReLU-->LRN-->pooling。
- 卷积核和pooling核都是有重叠的。
- 各卷积层的卷积核数:96、256、384、384、256。
- dropout操作是在最后两个全连接层。
- 随机裁剪224*224就能让数据扩大2048倍。
- 颜色扰动用PCA有点过&
最低0.47元/天 解锁文章
1894

被折叠的 条评论
为什么被折叠?



