House Robber II 组成一个环

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [2,3,2]
Output: 3
Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2),
             because they are adjacent houses.

Example 2:

 

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
             Total amount you can rob = 1 + 3 = 4.

 

class Solution {
public:
    
    /*
      现在房子排成了一个圆圈,则如果抢了第一家,就不能抢最后一家,因为首尾相连了,所以第一家和最后一家只能抢其中的一家,或者都不抢,那我们这里变通一下,如果我们把第一家和最后一家分别去掉,各算一遍能抢的最大值,然后比较两个值取其中较大的一个即为所求。那我们只需参考之前的House Robber 打家劫舍中的解题方法,然后调用两边取较大值,代码如下:
    */
    int rob(vector<int>& nums) {
        int size = nums.size();
        if(size<=3){
            int res=0;
            for(int i=0;i<size;++i){
                res=max(res,nums[i]);
            }
            return res;
        }
        
        // left=1;
        int left=getmax(nums,1,size-1);
        int right = getmax(nums,0,size-2);
        
        return max(left,right);
    }
    
    int getmax(vector<int> nums,int left,int right){
        int size = nums.size();
        if (size == 0){
            return 0;
        }
        else if(size == 1){
            return nums[left];
        }else if(size == 2){
            return max(nums[left],nums[left+1]);
        }
        vector<int> f(size,0);
        f[left] = nums[left];
        f[left+1] = max(nums[left],nums[left+1]);
        
        for(int i=left+2;i<=right;++i){
            f[i]=max(f[i-2]+nums[i],f[i-1]);
        }
        return f[right];
        
    }

       
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值