最长递增子序列(nlogn)

本文介绍了一种求解最长递增子序列(LIS)问题的高效算法。通过使用二分查找方法,该算法能够在O(n log n)的时间复杂度内找到给定数组中最长递增子序列的长度。代码中定义了两个主要函数:find()用于二分查找,而lis()则实现了整个算法流程。
#define MAX 1000000
int find(int a[],int x,int l,int r){
    while (l<=r){
        int mid=(l+r)/2;
        if (a[mid]==x)
            return mid;
        if (a[mid]<x)
            l=mid+1;
        else
            r=mid-1;
    }
    return l;
}
int lis(int a[],int n){
    int min[MAX];
    int len=-1;
    for (int i=0;i<n;i++){
        int idx=find(min,a[i],0,len);
        if (idx>len)
            min[++len]=a[i];
        else
            min[idx]=min[idx]>a[i]?a[i]:min[idx];
    }
    return len+1;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值