hadoop分布式集群部署步骤总结

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010330043/article/details/51235373

一、理论基础

( 一)  HA 概念以及作用
  HA(High Available), 高可用性群集,是保证业务连续性的有效解决方案,一般有两个或两个以上的节点,且分为活动节点及备用节点。通常把正在执行业务的称为活动节点,而作为活动节点的一个备份的则称为备用节点。当活动节点出现问题,导致正在运行的业务(任务)不能正常运行时,备用节点此时就会侦测到,并立即接续活动节点来执行业务。从而实现业务的不中断或短暂中断。

(二) HDFS概述
基础架构

1、NameNode(Master)

1)命名空间管理:命名空间支持对HDFS中的目录、文件和块做类似文件系统的创建、修改、删除、列表文件和目录等基本操作。

2)块存储管理。

NameNode+HA架构

这里写图片描述

  从上面的架构图可以看出,使用Active NameNode,Standby NameNode 两个节点可以解决单点问题,两个节点通过JounalNode共享状态,通过ZKFC 选举Active ,监控状态,自动备份。

1、Active NameNode

  接受client的RPC请求并处理,同时写自己的Editlog和共享存储上的Editlog,接收DataNode的Block report, block location updates和heartbeat。

2、Standby NameNode

  同样会接到来自DataNode的Block report, block location updates和heartbeat,同时会从共享存储的Editlog上读取并执行这些log操作,保持自己NameNode中的元数据(Namespcae information + Block locations map)和Active NameNode中的元数据是同步的。所以说Standby模式的NameNode是一个热备(Hot Standby NameNode),一旦切换成Active模式,马上就可以提供NameNode服务。

3、JounalNode

  用于Active NameNode , Standby NameNode 同步数据,本身由一组JounnalNode节点组成,该组节点奇数个。

4、ZKFC

  监控NameNode进程,自动备份。

(三) YARN概述
基础架构

1、ResourceManager(RM)

  接收客户端任务请求,接收和监控NodeManager(NM)的资源情况汇报,负责资源的分配与调度,启动和监控ApplicationMaster(AM)。

2、NodeManager

  节点上的资源管理,启动Container运行task计算,上报资源、container情况汇报给RM和任务处理情况汇报给AM。

3、ApplicationMaster

  单个Application(Job)的task管理和调度,向RM进行资源的申请,向NM发出launch Container指令,接收NM的task处理状态信息。

4、Web Application Proxy

  用于防止Yarn遭受Web攻击,本身是ResourceManager的一部分,可通过配置独立进程。ResourceManager Web的访问基于守信用户,当Application Master运行于一个非受信用户,其提供给ResourceManager的可能是非受信连接,Web Application Proxy可以阻止这种连接提供给RM。

5、Job History Server

  NodeManager在启动的时候会初始化LogAggregationService服务, 该服务会在把本机执行的container log (在container结束的时候)收集并存放到hdfs指定的目录下. ApplicationMaster会把jobhistory信息写到hdfs的jobhistory临时目录下, 并在结束的时候把jobhisoty移动到最终目录, 这样就同时支持了job的recovery.History会启动web和RPC服务, 用户可以通过网页或RPC方式获取作业的信息。

ResourceManager+HA架构

这里写图片描述

  ResourceManager HA 由一对Active,Standby结点构成,通过RMStateStore存储内部数据和主要应用的数据及标记。

二、集群规划

  • 主机规划
主机名 IP 安装的软件 运行的进程
cs0 192.168.80.128 jdk1.7、hadoop、zookeeper NameNode、ResourceManager、JournalNode、QuorumPeerMain、DFSZKFailoverController(zkfc)
cs1 192.168.80.129 jdk1.7、hadoop、zookeeper NameNode、ResourceManager、JournalNode、QuorumPeerMain、DFSZKFailoverController(zkfc)
cs2 192.168.80.130 jdk1.7、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
cs3 192.168.80.131 jdk1.7、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
cs4 192.168.80.132 jdk1.7、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain

备注:Journalnode和ZooKeeper保持奇数个,这点大家要有个概念,最少不少于 3 个节点。

  • 目录规划
名称 路径
所有软件目录 /home/hadoop/app/
所有数据和日志目录 /home/hadoop/data/

三、集群安装前的环境检查

  • 时钟同步

所有节点的系统时间要与当前时间保持一致。

查看当前系统时间

[root@cs0 ~]# date
Sun Apr 24 04:52:48 PDT 2016

如果系统时间与当前时间不一致,进行以下操作。

[root@cs0 ~]# cd /usr/share/zoneinfo/
[root@cs0 zoneinfo]# ls     //找到Asia
[root@cs0 zoneinfo]# cd Asia/       //进入Asia目录
[root@cs0 Asia]# ls     //找到Shanghai
[root@cs0 Asia]# cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime        //当前时区替换为上海

我们可以同步当前系统时间和日期与NTP(网络时间协议)一致。

[root@cs0 Asia]# yum install ntp   //如果ntp命令不存在,在线安装ntp
[root@cs0 Asia]# ntpdate pool.ntp.org       //执行此命令同步日期时间
[root@cs0 Asia]# date       //查看当前系统时间
  • hosts文件检查

所有节点的hosts文件都要配置静态ip与hostname之间的对应关系。

[root@cs0 ~]# vi /etc/hosts
192.168.80.128 cs0
192.168.80.129 cs1
192.168.80.130 cs2
192.168.80.131 cs3
192.168.80.132 cs4
  • 禁用防火墙

所有节点的防火墙都要关闭。

查看防火墙状态

[root@cs0 ~]# service iptables status
iptables: Firewall is not running.

如果不是上面的关闭状态,则需要关闭防火墙。

[root@cs0 ~]#  chkconfig iptables off      //永久关闭防火墙
[root@cs0 ~]#  service iptables stop   

四、 配置SSH免密码通信

hadoop@cs0 ~]$ mkdir .ssh  // 注意:此处的需要使用chmod 700 .ssh 将权限改为700
[hadoop@cs0 ~]$ ssh-keygen -t rsa     //执行命令一路回车,生成秘钥
[hadoop@cs0 ~]$cd .ssh 
[hadoop@cs0 .ssh]$ ls 
authorized_keys  id_rsa  id_rsa.pub  known_hosts
[hadoop@cs0 .ssh]$ cat id_rsa.pub >> authorized_keys       //将公钥保存到authorized_keys认证文件中 //注意:authorized_keys 的权限为600 

备注:”公钥登录”,原理,即用户将自己的公钥储存在远程主机上。登录的时候,远程主机会向用户发送一段随机字符串,用户用自己的私钥加密后,再发回来。远程主机用事先储存的公钥进行解密,如果成功,就证明用户是可信的,直接允许登录shell,不再要求密码。

集群所有节点都要行上面的操作。

将所有节点中的共钥id_ras.pub拷贝到djt11中的authorized_keys文件中。
cat ~/.ssh/id_rsa.pub | ssh hadoop@cs0 'cat >> ~/.ssh/authorized_keys'

所有节点都需要执行这条命令

然后将cs0中的authorized_keys文件分发到所有节点上面。

scp -r authorized_keys hadoop@cs1:~/.ssh/

scp -r authorized_keys hadoop@cs2:~/.ssh/

scp -r authorized_keys hadoop@cs3:~/.ssh/

scp -r authorized_keys hadoop@cs45:~/.ssh/

五、脚本工具的使用

在cs0节点上创建/home/hadoop/tools目录。

[hadoop@cs0 ~]$ mkdir /home/hadoop/tools

[hadoop@cs0 ~]$cd /home/hadoop/tools

在/home/hadoop/tools分别建立以下脚本文件。

[hadoop@cs0 tools]$ vim deploy.conf

cs0,all,namenode,zookeeper,resourcemanager,
cs1,all,slave,namenode,zookeeper,resourcemanager,
cs2,all,slave,datanode,zookeeper,
cs3,all,slave,datanode,zookeeper,
cs4,all,slave,datanode,zookeeper,

[hadoop@cs0 tools]$ vim deploy.sh

#!/bin/bash
#set -x

if [ $# -lt 3 ]
then 
  echo "Usage: ./deply.sh srcFile(or Dir) descFile(or Dir) MachineTag"
  echo "Usage: ./deply.sh srcFile(or Dir) descFile(or Dir) MachineTag confFile"
  exit 
fi

src=$1
dest=$2
tag=$3
if [ 'a'$4'a' == 'aa' ]
then
  confFile=/home/hadoop/tools/deploy.conf
else 
  confFile=$4
fi

if [ -f $confFile ]
then
  if [ -f $src ]
  then
    for server in `cat $confFile|grep -v '^#'|grep ','$tag','|awk -F',' '{print $1}'` 
    do
       scp $src $server":"${dest}
    done 
  elif [ -d $src ]
  then
    for server in `cat $confFile|grep -v '^#'|grep ','$tag','|awk -F',' '{print $1}'` 
    do
       scp -r $src $server":"${dest}
    done 
  else
      echo "Error: No source file exist"
  fi

else
  echo "Error: Please assign config file or run deploy.sh command with deploy.conf in same directory"
fi

[hadoop@cs0 tools]$ vim runRemoteCmd.sh

#!/bin/bash
#set -x

if [ $# -lt 2 ]
then 
  echo "Usage: ./runRemoteCmd.sh Command MachineTag"
  echo "Usage: ./runRemoteCmd.sh Command MachineTag confFile"
  exit 
fi

cmd=$1
tag=$2
if [ 'a'$3'a' == 'aa' ]
then

  confFile=/home/hadoop/tools/deploy.conf
else 
  confFile=$3
fi

if [ -f $confFile ]
then
    for server in `cat $confFile|grep -v '^#'|grep ','$tag','|awk -F',' '{print $1}'` 
    do
       echo "*******************$server***************************"
       ssh $server "source /etc/profile; $cmd"
    done 
else
  echo "Error: Please assign config file or run deploy.sh command with deploy.conf in same directory"
fi

查看已经建立的文件

[hadoop@cs0 tools]$ ls
deploy.conf  deploy.sh  runRemoteCmd.sh

如果我们想直接使用脚本,还需要给脚本添加执行权限。

[hadoop@cs0 tools]$ chmod u+x deploy.sh
[hadoop@cs0 tools]$ chmod u+x runRemoteCmd.sh

同时我们需要将/home/hadoop/tools目录配置到PATH路径中。

[hadoop@cs0 tools]$ su root
Password:
[root@cs0 tools]# vi /etc/profile
PATH=/home/hadoop/tools:$PATH
export PATH

我们在cs0节点上,通过runRemoteCmd.sh脚本,一键创建所有节点的软件安装目录/home/hadoop/app。

[hadoop@cs0 tools]$ runRemoteCmd.sh "mkdir /home/hadoop/app" all

我们可以在所有节点查看到/home/hadoop/app目录已经创建成功。

六、jdk安装

将本地下载好的jdk1.7,上传至cs0节点下的/home/hadoop/app目录。

[root@cs0 tools]# su hadoop
[hadoop@cs0 tools]$ cd /home/hadoop/app/
[hadoop@cs0 app]$ rz       //选择本地的下载好的jdk-7u79-linux-x64.tar.gz
[hadoop@cs0 app]$ ls
jdk-7u79-linux-x64.tar.gz
[hadoop@cs0 app]$ tar -zxvf jdk-7u79-linux-x64.tar.gz      //解压
[hadoop@cs0 app]$ ls
jdk1.7.0_79 jdk-7u79-linux-x64.tar.gz
[hadoop@cs0 app]$ rm jdk-7u79-linux-x64.tar.gz     //删除安装包

添加jdk环境变量。

[hadoop@cs0 app]$ su root
Password:
[root@cs0 app]# vi /etc/profile
JAVA_HOME=/home/hadoop/app/jdk1.7.0_79
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
PATH=$JAVA_HOME/bin:$PATH
export JAVA_HOME CLASSPATH PATH
[root@cs0 app]# source /etc/profile     //使配置文件生效

查看jdk是否安装成功。

[root@cs0 app]# java -version
java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)

出现以上结果就说明cs0节点上的jdk安装成功。

然后将cs0下的jdk安装包复制到其他节点上。

[hadoop@cs0 app]$ deploy.sh jdk1.7.0_79 /home/hadoop/app/slave

cs1,cs2,cs3,cs4节点重复cs0节点上的jdk配置即可。

七、Zookeeper安装

将本地下载好的zookeeper-3.4.6.tar.gz安装包,上传至cs0节点下的/home/hadoop/app目录下。

[hadoop@cs0 app]$ ls
jdk1.7.0_79 zookeeper-3.4.6.tar.gz
[hadoop@cs0 app]$ tar zxvf zookeeper-3.4.6.tar.gz      //解压
[hadoop@cs0 app]$ ls
jdk1.7.0_79 zookeeper-3.4.6.tar.gz zookeeper-3.4.6
[hadoop@cs0 app]$ rm zookeeper-3.4.6.tar.gz        //删除zookeeper-3.4.6.tar.gz安装包
[hadoop@cs0 app]$ mv zookeeper-3.4.6 zookeeper     //重命名   

修改Zookeeper中的配置文件。

[hadoop@cs0 app]$ cd /home/hadoop/app/zookeeper/conf/
[hadoop@cs0 conf]$ ls
configuration.xsl  log4j.properties  zoo_sample.cfg
[hadoop@cs0 conf]$ cp zoo_sample.cfg zoo.cfg       //复制一个zoo.cfg文件
[hadoop@cs0 conf]$ vi zoo.cfg
dataDir=/home/hadoop/data/zookeeper/zkdata      //数据文件目录
dataLogDir=/home/hadoop/data/zookeeper/zkdatalog        //日志目录
# the port at which the clients will connect
clientPort=2181 
//server.服务编号=主机名称:Zookeeper不同节点之间同步和通信的端口:选举端口(选举leader)
server.0=cs0:2888:3888
server.1=cs1:2888:3888
server.2=cs2:2888:3888
server.3=cs3:2888:3888
server.4=cs4:2888:3888

通过远程命令deploy.sh将Zookeeper安装目录拷贝到其他节点上面。

[hadoop@cs0 app]$ deploy.sh zookeeper /home/hadoop/app  slave

通过远程命令runRemoteCmd.sh在所有的节点上面创建目录:

[hadoop@cs0 app]$ runRemoteCmd.sh "mkdir -p /home/hadoop/data/zookeeper/zkdata" all   //创建数据目录
[hadoop@cs0 app]$ runRemoteCmd.sh "mkdir -p /home/hadoop/data/zookeeper/zkdatalog" all   //创建日志目录

然后分别在cs0、cs1、cs2、cs3、cs4上面,进入zkdata目录下,创建文件myid,里面的内容分别填充为:0、1、2、3、4, 这里我们以cs0为例。

[hadoop@cs0 app]$ cd /home/hadoop/data/zookeeper/zkdata
[hadoop@cs0 zkdata]$ vi myid
1   //输入数字1

配置Zookeeper环境变量。

[hadoop@cs0  zkdata]$ su root
Password: 
[root@cs0 zkdata]# vi /etc/profile
JAVA_HOME=/home/hadoop/app/jdk1.7.0_79
ZOOKEEPER_HOME=/home/hadoop/app/zookeeper
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
PATH=$JAVA_HOME/bin:$ZOOKEEPER_HOME/bin:$PATH
export JAVA_HOME CLASSPATH PATH ZOOKEEPER_HOME
[root@cs0 zkdata]# source /etc/profile      //使配置文件生效

在cs0节点上面启动Zookeeper。

[hadoop@cs0 zkdata]$ cd /home/hadoop/app/zookeeper/
[hadoop@cs0 zookeeper]$ bin/zkServer.sh start
[hadoop@cs0 zookeeper]$ jps
3633 QuorumPeerMain
[hadoop@cs0 zookeeper]$ bin/zkServer.sh stop       //关闭Zookeeper   

使用runRemoteCmd.sh 脚本,启动所有节点上面的Zookeeper。

runRemoteCmd.sh "/home/hadoop/app/zookeeper/bin/zkServer.sh start" zookeeper

查看所有节点上面的QuorumPeerMain进程是否启动。

runRemoteCmd.sh "jps" zookeeper

查看所有Zookeeper节点状态。

runRemoteCmd.sh "/home/hadoop/app/zookeeper/bin/zkServer.sh status" zookeeper

如果一个节点为leader,另四个节点为follower,则说明Zookeeper安装成功。

八、hadoop集群环境搭建

将下载好的apache hadoop-2.6.0.tar.gz安装包,上传至cs0节点下的/home/hadoop/app目录下

[hadoop@cso0 app]$ ls
hadoop-2.6.0.tar.gz jdk1.7.0_79  zookeeper
[hadoop@cso0 app]$ tar zxvf hadoop-2.6.0.tar.gz        //解压
[hadoop@cso0 app]$ ls
hadoop-2.6.0 hadoop-2.6.0.tar.gz jdk1.7.0_79  zookeeper
[hadoop@cso0 app]$ rm hadoop-2.6.0.tar.gz      //删除安装包
[hadoop@cso0 app]$ mv hadoop-2.6.0 hadoop      //重命名

切换到/home/hadoop/app/hadoop/etc/hadoop/目录下,修改配置文件。

[hadoop@cso0 app]$ cd /home/hadoop/app/hadoop/etc/hadoop/ 

配置HDFS

配置hadoop-env.sh

[hadoop@cs0 hadoop]$ vi hadoop-env.sh
export JAVA_HOME=/home/hadoop/app/jdk1.7.0_79

配置core-site.xml

[hadoop@cs0 hadoop]$ vi core-site.xml
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://cluster1</value>
    </property>
    < 这里的值指的是默认的HDFS路径 ,取名为cluster1>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/home/hadoop/data/hadoop_${user.name}</value>
    </property>
    < hadoop的临时目录,如果需要配置多个目录,需要逗号隔开,data目录需要我们自己创建>
    <property>
        <name>ha.zookeeper.quorum</name>
        <value>cs0:2181,cs1:2:2181,cs2:2181,cs3:2181,cs4:2181</value>
    </property>
    < 配置Zookeeper 管理HDFS>
</configuration>

配置hdfs-site.xml

[hadoop@cs0 hadoop]$ vi hdfs-site.xml

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>
    < 数据块副本数为3>
    <property>
        <name>dfs.permissions</name>
        <value>false</value>
    </property>
    <property>
        <name>dfs.permissions.enabled</name>
        <value>false</value>
    </property>
    < 权限默认配置为false>
    <property>
        <name>dfs.nameservices</name>
        <value>cluster1</value>
    </property>
    < 命名空间,它的值与fs.defaultFS的值要对应,namenode高可用之后有两个namenodecluster1是对外提供的统一入口>
    <property>
        <name>dfs.ha.namenodes.cluster1</name>
        <value>cs0,cs1</value>
    </property>
    < 指定 nameServicecluster1 时的nameNode有哪些,这里的值也是逻辑名称,名字随便起,相互不重复即可>
    <property>
        <name>dfs.namenode.rpc-address.cluster1.cs0</name>
        <value>cs0:9000</value>
    </property>
    <cs0 rpc地址>
    <property>
        <name>dfs.namenode.http-address.cluster1.cs0</name>
        <value>cs0:50070</value>
    </property>
    < cs0 http地址>
    <property>
        <name>dfs.namenode.rpc-address.cluster1.cs1</name>
        <value>cs1:9000</value>
    </property>
    < cs1 rpc地址>
    <property>
        <name>dfs.namenode.http-address.cluster1.cs1</name>
        <value>cs1:50070</value>
    </property>
    < cs1 http地址>
    <property>
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>
    < 启动故障自动恢复>
    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://cs0:8485;cs1:8485;cs2:8485;cs3:8485;cs4:8485/cluster1</value>
    </property>
    < 指定journal>
    <property>
        <name>dfs.client.failover.proxy.provider.cluster1</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    < 指定 cluster1 出故障时,哪个实现类负责执行故障切换>
    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/home/hadoop/data/journaldata/jn</value>
    </property>
    < 指定JournalNode集群在对nameNode的目录进行共享时,自己存储数据的磁盘路径 >
    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>shell(/bin/true)</value>
    </property>
    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/home/hadoop/.ssh/id_rsa</value>
    </property>
    <property>
        <name>dfs.ha.fencing.ssh.connect-timeout</name>
        <value>10000</value>
    </property>
    < 脑裂默认配置>
    <property>
        <name>dfs.namenode.handler.count</name>
        <value>100</value>
    </property>
</configuration>

配置 slave

[hadoop@djt11 hadoop]$ vi slaves
cs2
cs3
cs4

向所有节点分发hadoop安装包。

[hadoop@cs0 app]$ deploy.sh hadoop /home/hadoop/app/ slave

hdfs配置完毕后启动顺序

1、启动所有节点上面的Zookeeper进程

[hadoop@cs0 hadoop]$ runRemoteCmd.sh "/home/hadoop/app/zookeeper/bin/zkServer.sh start" zookeeper

2、启动所有节点上面的journalnode进程

[hadoop@cs0 hadoop]$ runRemoteCmd.sh "/home/hadoop/app/hadoop/sbin/hadoop-daemon.sh start journalnode" all

3、首先在主节点上(比如,cs0)执行格式化

[hadoop@cs0 hadoop]$ bin/hdfs namenode -format / /namenode 格式化
[hadoop@cs0  hadoop]$ bin/hdfs zkfc -formatZK //格式化高可用
[hadoop@cs0 hadoop]$bin/hdfs namenode //启动namenode

4、与此同时,需要在备节点(比如,cs1)上执行数据同步

[hadoop@cs1 hadoop]$ bin/hdfs namenode -bootstrapStandby   //同步主节点和备节点之间的元数据

5、cs1同步完数据后,紧接着在cs0节点上,按下ctrl+c来结束namenode进程。 然后关闭所有节点上面的journalnode进程

[hadoop@cs0 hadoop]$ runRemoteCmd.sh "/home/hadoop/app/hadoop/sbin/hadoop-daemon.sh stop journalnode" all  //然后停掉各节点的journalnode
备注:可以使用
[hadoop@cs0 hadoop]$ sbin/hadoop-daemon.sh start zkfc   单独启动一个zkfc进程

6、如果上面操作没有问题,我们可以一键启动hdfs所有相关进程

[hadoop@cs0 hadoop]$ sbin/start-dfs.sh

启动成功之后,关闭其中一个namenode ,然后在启动namenode 观察切换的状况。

7、验证是否启动成功

通过web界面查看namenode启动情况。

http://cs0:50070
http://cs1:50070

上传文件至hdfs

[hadoop@cs0 hadoop]$ vi test.txt   //本地创建一个test.txt文件
hadoop  appache
hadoop ywendeng
hadoop tomcat
[hadoop@cs0  hadoop]$ hdfs dfs -mkdir /test   //在hdfs上创建一个文件目录
[hadoop@cs0 hadoop]$ hdfs dfs -put test.txt  /test     //向hdfs上传一个文件
[hadoop@cso hadoop]$ hdfs dfs -ls /test    //查看test.txt是否上传成功

如果上面操作没有问题说明hdfs配置成功。

YARN安装配置

配置mapred-site.xml

[hadoop@cs0 hadoop]$ vi mapred-site.xml
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <指定运行mapreduce的环境是Yarn,与hadoop1不同的地方>
</configuration>

配置yarn-site.xml

[hadoop@cs0 hadoop]$ vi yarn-site.xml
<configuration>
<property>
    <name>yarn.resourcemanager.connect.retry-interval.ms</name>
    <value>2000</value>
</property>
< 超时的周期>
<property>
    <name>yarn.resourcemanager.ha.enabled</name>
    <value>true</value>
</property>
< 打开高可用>
<property>
    <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
    <value>true</value>
</property>
<启动故障自动恢复>
<property>
    <name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
    <value>true</value>
</property>

<property>
    <name>yarn.resourcemanager.cluster-id</name>
    <value>yarn-rm-cluster</value>
</property>
<给yarn cluster 取个名字yarn-rm-cluster>
<property>
    <name>yarn.resourcemanager.ha.rm-ids</name>
    <value>rm1,rm2</value>
</property>
<给ResourceManager 取个名字 rm1,rm2>
<property>
    <name>yarn.resourcemanager.hostname.rm1</name>
    <value>cs0</value>
</property>
<配置ResourceManager rm1 hostname>
<property>
    <name>yarn.resourcemanager.hostname.rm2</name>
    <value>cs1</value>
</property>
<配置ResourceManager rm2 hostname>
<property>
    <name>yarn.resourcemanager.recovery.enabled</name>
    <value>true</value>
</property>
<启用resourcemanager 自动恢复>
<property>
    <name>yarn.resourcemanager.zk.state-store.address</name>
    <value>cs0:2181,cs1:2181,cs2:2181,cs3:2181,cs4:2181</value>
</property>
<配置Zookeeper地址>
<property>
    <name>yarn.resourcemanager.zk-address</name>
    <value>cs0:2181,cs1:2181,cs2:2181,cs3:2181,cs4:2181</value>
</property>
<配置Zookeeper地址>
<property>
    <name>yarn.resourcemanager.address.rm1</name>
    <value>cs0:8032</value>
</property>
< rm1端口号>
<property>
    <name>yarn.resourcemanager.scheduler.address.rm1</name>
    <value>cs0:8034</value>
</property>
< rm1调度器的端口号>
<property>
    <name>yarn.resourcemanager.webapp.address.rm1</name>
    <value>cs0:8088</value>
</property>
< rm1 webapp端口号>
<property>
    <name>yarn.resourcemanager.address.rm2</name>
    <value>cs1:8032</value>
</property>
< rm2端口号>
<property>
    <name>yarn.resourcemanager.scheduler.address.rm2</name>
    <value>cs1:8034</value>
</property>
< rm2调度器的端口号>
<property>
    <name>yarn.resourcemanager.webapp.address.rm2</name>
    <value>cs1:8088</value>
</property>
< rm2 webapp端口号>
<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>
<property>
    <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<执行MapReduce需要配置的shuffle过程>
</configuration>

启动YARN

1、在cs0节点上执行。

[hadoop@cs0 hadoop]$ sbin/start-yarn.sh    

2、在cs1节点上面执行。

[hadoop@cs1 hadoop]$ sbin/yarn-daemon.sh start resourcemanager

同时打开一下web界面。

http://cs0:8088
http://cs1:8088

关闭其中一个resourcemanager,然后再启动,看看这个过程的web界面变化。

3、检查一下ResourceManager状态

[hadoop@cs0 hadoop]$ bin/yarn rmadmin -getServiceState rm1
[hadoop@cs0 hadoop]$ bin/yarn rmadmin -getServiceState rm2

4、Wordcount示例测试

[hadoop@cs0 hadoop]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount /test/test.txt /test/out/

如果上面执行没有异常,说明YARN安装成功。

至此,hadoop 分布式集群搭建完毕。
(备注:此文是笔者在搭建haoop集群的过程总结,并参考了大讲台的相关搭建经验,有错误之处请大家多多交流学习,若是转载请注明出处:http://blog.csdn.net/u010330043/article/details/51235373

没有更多推荐了,返回首页