聚类、降维与度量学习

本文介绍了聚类的基本原理,包括k-means、高斯混合聚类、DBSCAN和层次聚类。讨论了降维的必要性和常用方法,如PCA、核化线性降维以及流形学习。同时,提到了度量学习的概念,探讨了如何通过调整属性权重来优化距离计算。
摘要由CSDN通过智能技术生成

聚类
簇内相似度高,簇间相似度低。
下式为闵可夫斯基距离

dist(xi,xj)=(u=1n|xiuxju|p)1p d i s t ( x i , x j ) = ( ∑ u = 1 n | x i u − x j u | p ) 1 p

p=1 p = 1 时为曼哈顿距离;当 p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值