聚类
簇内相似度高,簇间相似度低。
下式为闵可夫斯基距离
dist(xi,xj)=(∑u=1n|xiu−xju|p)1p d i s t ( x i , x j ) = ( ∑ u = 1 n | x i u − x j u | p ) 1 p
当 p=1 p = 1 时为曼哈顿距离;当 p
本文介绍了聚类的基本原理,包括k-means、高斯混合聚类、DBSCAN和层次聚类。讨论了降维的必要性和常用方法,如PCA、核化线性降维以及流形学习。同时,提到了度量学习的概念,探讨了如何通过调整属性权重来优化距离计算。
聚类
簇内相似度高,簇间相似度低。
下式为闵可夫斯基距离
2715
2387
3036

被折叠的 条评论
为什么被折叠?