wiki-1040统计单词个数

恶心的划分型动规,转移方程很好想,就是预处理麻烦,这道题的亮点不是动规,而是预处理。(也可以说预处理是动规,两次动规)。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;

int hang,k,n,d;
char a[100],s[1000],zd[10][100];
int f[210][50],lenth[10],word[210][210];

void init()
{
}

int main()
{
	init();
	int iop;
	scanf("%d",&iop);
	while(iop--)
	{
		memset(word,0,sizeof(word));
		scanf("%d%d\n",&hang,&k);
		for(int i=1;i<=hang;i++)
		{
			scanf("%s\n",a);
			if(i==1) strcpy(s,a);
			else strcat(s,a);
		}
		n=strlen(s);
		scanf("%d",&d);
		for(int i=1;i<=d;i++)
		{
			scanf("%s\n",zd[i]);
			lenth[i]=strlen(zd[i]);
		}
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++)
				word[i][j]=0;
		//**********************************
		//printf("%s\n",s);
		//for(int i=1;i<=d;i++) printf("%s\n",zd[i]);
		//**********************************
		int cnt;
		for(int i=n-1;i>=0;i--)
		{
			for(int j=n-1;j>=0;j--)
			{
				for(int l=1;l<=d;l++)
				{
                    cnt=0;
					if(s[j]==zd[l][0] && lenth[l] <= i-j+1)
					{
						cnt=1;
						for(int m=0;m<lenth[l];m++)
						{
							if(s[j+m] != zd[l][m])
							{
								cnt=0;
								break;
							}
						}
					}
					if(cnt==1) break;
				}
				if(cnt) word[j][i] = word[j+1][i]+1;
				else word[j][i] = word[j+1][i];
			}
		}
		//*****************************
		/*for(int i=0;i<n;i++)
		{
            for(int j=0;j<n;j++)
            {
                printf("%d  ",word[i][j]);
            }
            printf("\n");
        }*/
		//*****************************
		memset(f,0,sizeof(f));
		for(int i=0;i<n;i++) f[i][1]=word[0][i];
		for(int i=0;i<n;i++)
		{
			for(int j=1;j<=min(k,i);j++)
			{
				for(int l=i-1;l>=j;l--)
				{
					f[i][j]=max(f[i][j],f[l][j-1]+word[l+1][i]);
					//printf("%d  ",f[i][j]);
				}
			}
			//printf("\n");
		}
		printf("%d\n",f[n-1][k]);
	}
	return 0;
}


### GloVe 预训练向量的相关信息 GloVe(Global Vectors for Word Representation)是一种用于生成嵌入的技术,它通过统计共现矩阵来捕捉全局语义关系并将其转化为低维向量表示。对于基于 Wiki Gigaword 语料库的预训练 GloVe 模型,其提供了多种维度的选择,其中包括 200 维版本。 #### 下载链接及相关资源 斯坦福大学自然语言处理小组公开发布了 GloVe 的预训练模型,这些模型可以从官方 GitHub 页面下载[^3]。具体来说,针对 Wikipedia 和 Gigaword 数据集训练的 200 维 GloVe 向量可以通过以下 URL 获取: - 官方下载地址: [https://nlp.stanford.edu/data/glove.6B.zip](https://nlp.stanford.edu/data/glove.6B.zip) 此文件包含了多个不同维度的 GloVe 向量,其中 `glove.6B.200d.txt` 是基于 6 百万汇表大小、200 维度的向量数据文件。 #### 文件结构说明 每个 GloVe 向量文件由一系列行组成,每行对应一个单词及其对应的浮点数值形式的向量表示。以下是读取和加载 GloVe 向量的一个 Python 示例代码片段: ```python import numpy as np def load_glove_vectors(filepath, dimension=200): embeddings_index = {} with open(filepath, 'r', encoding='utf8') as f: for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs return embeddings_index # 使用方法 filepath = './data/glove.6B.200d.txt' embeddings = load_glove_vectors(filepath, dimension=200) print(f"Loaded {len(embeddings)} word vectors.") ``` 上述函数可以用来解析标准格式的 GloVe 文本文件,并返回一个字典对象,键为单词字符串,值为其相应的向量数组[^4]。 #### 应用场景与优势分析 相比于其他嵌入技术如 Word2Vec 或 FastText,GloVe 更注重于利用全局统计特性构建更精确的语言学特征表达方式。这种设计使得 GloVe 特别适合应用于那些需要理解复杂句法或语义关联的任务当中[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值