学习笔记之存储结构--树结构

什么是树

数是一种典型的非线性结构,不同于线性结构,树的一个节点可以指向多个节点,是以表达具有层次特性的图结构的一种方法;

A
B
C
D
E
F
J
G
K
H
I

相关术语

  • 根节点:根节点是一个没有双亲结点的结点,一棵树中最多有一个根节点(如上图的结点A就是根节点);
  • :边表示从双亲结点到孩子结点的链接(如上图中所有的链接);
  • 叶子结点:没有孩子结点的结点叫作叶子结点(如E、J、K、H和I);
  • 兄弟结点:拥有相同双亲结点的所有孩子结点叫作兄弟结点(B、C、D是A的兄弟结点,E、F是B的兄弟结点);
  • 祖先结点:如果存在一条从根节点到结点q的路径,其结点p出现在这条路径上,那么就可以吧结点p叫作结点q的祖先结点,结点q也叫做p的子孙结点(例如,A、C和G是K的祖先结点);
  • 结点的大小:结点的大小是指子孙的个数,包括其自身。(子树C的大小为3);
  • 树的层:位于相同深度的所有结点的集合叫作树的层(B、C和D具有相同的层,上图的结构有0/1/2/3四个层);
  • 结点的深度:是指从根节点到该节点的路径长度(G点的深度为2,A—C—G);
  • 结点的高度:是指从该节点到最深节点的路径长度,树的高度是指从根节点到书中最深结点的路径长度,只含有根节点的树的高度为0。(B的高度为2,B—F—J);
  • 树的高度:是树中所有结点高度的最大值,树的深度是树中所有结点深度的最大值,对于同一棵树,其深度和高度是相同的,但是对于各个结点,其深度和高度不一定相同;

二叉树

二叉树(binary tree)是指树中节点的度不大于2的有序树,它是一种最简单且最重要的树。二叉树的递归定义为:二叉树是一棵空树,或者是一棵由一个根节点和两棵互不相交的,分别称作根的左子树和右子树组成的非空树;左子树和右子树又同样都是二叉树。
在这里插入图片描述

平衡二叉树(AVL树)

AVL树本质上还是一棵二叉搜索树,它的特点是: 本身首先是一棵二叉搜索树,每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。
AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。
目的是为了优化二叉树的深度,减少查询次数,通常的平衡方式有LL,LR,RR,RL四种形式旋转调整。

  • LL旋转示意图
    在这里插入图片描述
  • LR旋转示意图
    在这里插入图片描述
  • RL旋转示意图
    在这里插入图片描述
  • RR旋转示意图
    在这里插入图片描述

B-Tree

平衡多路查找树 (B-Tree) 演变自 平衡二叉树 ,是为磁盘等外部存储设备设计的一种平衡查找树。
一棵m阶的B-Tree有如下特性:

  • 每个节点最多有m个孩子。
  • 除了根节点和叶子节点外,其它每个节点至少有Ceil(m/2)个孩子。
  • 若根节点不是叶子节点,则至少有2个孩子
  • 所有叶子节点都在同一层,且不包含其它关键字信息
  • 每个非终端节点包含n个关键字,关键字升序排序
  • 关键字的个数n满足:ceil(m/2)-1 <= n <= m-1

B-Tree中的每个节点根据实际情况可以包含大量的关键字信息和分支,如下图所示为一个3阶的B-Tree:
在这里插入图片描述

B+Tree

B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构。
从上一节中的B-Tree结构图中可以看到每个节点中不仅包含数据的key值,还有data值。而每一个页的存储空间是有限的,如果data数据较大时将会导致每个节点(即一个页)能存储的key的数量很小,当存储的数据量很大时同样会导致B-Tree的深度较大,增大查询时的磁盘I/O次数,进而影响查询效率。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。
B+Tree相对于B-Tree有几点不同:

  • 非叶子节点只存储键值信息。
  • 所有叶子节点之间都有一个链指针。
  • 数据记录都存放在叶子节点中。

将上一节中的B-Tree优化,由于B+Tree的非叶子节点只存储键值信息,假设每个磁盘块能存储4个键值及指针信息,则变成B+Tree后其结构如下图所示:
在这里插入图片描述
通常在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。

InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为〖10〗3)。也就是说一个深度为3的B+Tree索引可以维护103 * 10^3 * 10^3 = 10亿 条记录。

实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree的高度一般都在2~4层。 mysql的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘I/O操作。

数据库中的B+Tree索引可以分为聚集索引(clustered index)和辅助索引(secondary index)。上面的B+Tree示例图在数据库中的实现即为聚集索引,聚集索引的B+Tree中的叶子节点存放的是整张表的行记录数据。辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。当通过辅助索引来查询数据时,InnoDB存储引擎会遍历辅助索引找到主键,然后再通过主键在聚集索引中找到完整的行记录数据。

红黑树

红黑二叉树(简称:红黑树),它首先是一棵二叉树,同时也是一棵弱平衡的排序二叉树。
红黑树在原有的排序二叉树增加了如下几个要求:

  • 每个节点要么是红色,要么是黑色。
  • 根节点永远是黑色的。
  • 所有的叶节点都是空节点(即 null),并且是黑色的。
  • 每个红色节点的两个子节点都是黑色。(从每个叶子到根的路径上不会有两个连续的红色节点)
    -从任一节点到其子树中每个叶子节点的路径都包含相同数量的黑色节点。

这些约束强化了红黑树的关键性质:从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。这样就让树大致上是平衡的。
红黑树是一个更高效的检索二叉树,

  • JDK 提供的集合类TreeMap、TreeSet本身就是一个红黑树的实现。
  • Linux的的进程调度完全公平调度程序,用红黑树管理进程控制块,进程的虚拟内存区域都存储在一颗红黑树上,每个虚拟地址区域都对应红黑树的一个节点,左指针指向相邻的地址虚拟存储区域,右指针指向相邻的高地址虚拟地址空间;
  • IO多路复用的epoll的的的实现采用红黑树组织管理的的的sockfd,以支持快速的增删改查;
  • Nginx的的的中用红黑树管理定时器,因为红黑树是有序的,可以很快的得到距离当前最小的定时器;

在这里插入图片描述

参考资料

https://www.cnblogs.com/jobbible/p/12698548.html
https://blog.csdn.net/u010899985/article/details/80981053

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值