人工智能
文章平均质量分 86
LLM大模型实践-专栏的内容主要参考吴恩达的面向开发者的LLM入门课程,希望能通过本专栏帮助学习者掌握LLM的基本概念、技术原理、应用场景和实践技能。
代码先觉
人工智能、大数据领域从业者;商场、报关、航空、机场领域智慧系统核心开发;CMS、CRM、OA、ERP、WMS、MES、绩效等管理系统负责人。知识星球:代码先觉。
展开
-
AI大模型测评对比
在关于跨年演讲的其他讨论中,有人认为今年跨年演讲的部分内容落到了个人身上,比如罗振宇强调要珍惜身体,吴晓波提到要回到专业、看回自己,刘润教大家学会给自己 “充电”,吴声主张做自己,崔璀提出找到人生主线,古典认为要创造小环境、自在做自己等。希望本文的测评对比能够为读者提供一个客观的了解,帮助大家做出更加明智的选择。它也是国内首个对标GPT的双千亿级大语言模型,是一个对话式AI助手,能够为用户提供准确的信息,解答相关领域的专业问题,并给出实用的建议。它以其简洁、易用的界面和强大的功能,赢得了众多用户的喜爱。原创 2025-01-09 09:40:07 · 2418 阅读 · 0 评论 -
LLM大模型实践10-聊天机器人
{'role':'user','content':'是的,你可以提醒我,我的名字是什么?{'role':'user','content':'好,你能提醒我,我的名字是什么吗?{'role':'assistant','content':'鸡为什么过马路'},{'role':'user','content':'给我讲个笑话'},{'role':'user','content':'Hi,我是Isa'},{'role':'user','content':'我不知道'}]原创 2025-01-08 10:01:27 · 997 阅读 · 0 评论 -
LLM大模型实践9-文本扩展
温度为0时,每次使用同样的 Prompt,得到的结果总是一致的。而在上面的样例中,当温度设为0.7时,则每次执行都会生成不同的 文本。文本扩展是大语言模型的一个重要应用方向,它可以输入简短文本,生成更加丰富的长文。大约一年后,电机发出奇怪的噪音,我打电话给客服,但保修已经过期了,所以我不得不再买一个。我会先在搅拌机中将像豆子、冰、米饭等硬物研磨,然后再制成所需的份量,\。原创 2025-01-07 10:57:23 · 770 阅读 · 0 评论 -
LLM大模型实践8-语气与写作风格调整
选择恰当的语言风格,让内容更容易被特定受众群体所接受和理解,是技巧娴熟的写作者必备的能力。在写作中,语言语气的选择与受众对象息息相关。prompt = f"""请校对并更正以下文本,注意纠正文本保持原始语种,无需输出原始文本。再将其转化成优质淘宝评论的风格,从各种角度出发,分别说明产品的优点与缺点,并进行总结。prompt = f"校对并更正以下商品评论:```{text}```"```小老弟,我小羊,上回你说咱部门要采购的显示器是多少寸来着?注意,只需填写xxx部分,并分段输出。然后将其转化成中文,原创 2025-01-06 11:59:18 · 660 阅读 · 0 评论 -
LLM大模型实践7-文本转换
掌握调用大语言模型接口进行文本转换的技能,是开发各种语言类应用的重要一步。文本转换功能的应用场景也非常广泛。相信读者可以在本章的基础上,利用大语言模型轻松开发出转换功能强大的程序。大语言模型具有强大的文本转换能力,可以实现多语言翻译、拼写纠正、语法调整、格式转换等不同类型的文本转换任务。利用语言模型进行各类转换是它的典型应用之一。在本章中,我们将介绍如何通过编程调用API接口,使用语言模型实现文本转换功能。通过代码示例,读者可以学习将输入文本转换成所需输出格式的具体方法。```您好,我想订购一个搅拌机。原创 2025-01-03 18:20:26 · 1197 阅读 · 0 评论 -
LLM大模型实践6-信息提取
信息提取是自然语言处理(NLP)的重要组成部分,它帮助我们从文本中抽取特定的、我们关心的信 息。在接下来的示例中,我们将要求模型识别两个关键元素: 购买的商品和商品的制造商。想象一下,如果你正在尝试分析一个在线电商网站上的众多评论,了解评论中提到的商品是什么、由谁 制造,以及相关的积极或消极情绪,将极大地帮助你追踪特定商品或制造商在用户心中的情感趋势。在接下来的示例中,我们会要求模型将回应以一个 JSON 对象的形式呈现,其中的 key 就是商品和品牌。(是或否)- 评论者购买的物品- 制造该物品的公司。原创 2025-01-03 10:01:59 · 999 阅读 · 0 评论 -
LLM大模型实践5-推断
LLM 的一个明显优点是,对 于许多这样的任务,你只需要编写一个 Prompt,就可以开始生成结果,大大减轻了你的工作负担。最令你兴奋的是,你可以仅仅使 用一个模型和一个 API 来执行许多不同的任务,无需再纠结如何训练和部署许多不同的模型。让我们先想象一下,你是一名初创公司的数据分析师,你的任务是从各种产品评论和新闻文章中提取出 关键的情感和主题。让我们开始这一章的学习,一起探索如何利用 LLM 加快我们的工作进程,提高我们的工作效率。在运输过程中,我们的灯绳断了,但是公司很乐意寄送了一个新的。原创 2025-01-02 11:37:40 · 293 阅读 · 0 评论 -
LLM大模型实践4-文本概括
然而,之后我发现有一个零件丢失了,于是我联系了客服,他们迅速地给我寄来了缺失的零件!(例如,我会先在搅拌机中研磨豆类、冰块、大米等坚硬的食物,然后再将它们研磨成所需的粒度,可是由于某种原因(我们可以称之为价格上涨),到了12月的第二周,所有的价格都上涨了,不过,在运输过程中,灯的拉线出了问题,幸好,公司很乐意寄送了一根全新的灯线。所以我只好购买了另一台。总的来说,如果你能以50美元左右的价格购买到这款牙刷,那是一个不错的交易。我需要一盏漂亮的卧室灯,这款灯不仅具备额外的储物功能,价格也并不算太高。原创 2025-01-02 10:11:52 · 551 阅读 · 0 评论 -
LLM大模型实践3-迭代优化
这时候我们就可以继续调整 Prompt,明确要求语言模型生成面向家具零售商的描述,更多关注材质、工艺、结构等技术方面的表述。通过迭代地分析结果,检查是否捕捉到正确的细节,我们可以逐步优化 Prompt,使语言模型生成的文本更加符合预期的样式和内容要求。因此,我可以进一步改进这个 Prompt ,要求在描述的结尾,展示出说明书中的7位产品 ID。第一列包括尺寸的名称。您的任务是帮助营销团队基于技术说明书创建一个产品的零售网站描述。您的任务是帮助营销团队基于技术说明书创建一个产品的零售网站描述。原创 2024-12-31 09:55:47 · 704 阅读 · 0 评论 -
LLM大模型实践2-提示原则
"Few-shot" prompting,即在要求模型执行实际任务之前,给模型一两个已完成的样例,让模型了解我。在以下示例中,我们要求 GPT 生成三本书的标题、作者和类别,并要求 GPT 以 JSON 的格式返回给我。在许多情况下,更长的提示词可以为模型提供更多的清晰度和上下文信息,从而导致更详细和相关的输出。例如,在以下的样例中,我们先给了一个祖孙对话样例,然后要求模型用同样的隐喻风格回答关于“韧性”然后将您的解决方案与学生的解决方案进行比较,对比计算得到的总费用与学生计算的总费用是否一致,原创 2024-12-30 10:09:52 · 820 阅读 · 0 评论 -
LLM大模型实践1-环境搭建
编写helloworld,这里是调用的openai接口,需要获取并配置OpenAI API key,如果您订阅了chatgpt可以直接在官网申请,由于openai的key是付费功能,有需要测试的可以私信博主获取测试key。这里是通过anaconda安装的python3.9,anaconda安装包可以通过官网下载,也可通过清华镜像站下载。以上就是llm实践的第一节内容了,后续会持续更新以下内容来帮助大家更好的理解llm。大模型实践的内容,后续会重点更新这个专栏,专栏的内容主要参考。下载python3.9。原创 2024-12-28 20:26:58 · 188 阅读 · 0 评论
分享