Deng笨蛋
码龄12年
求更新 关注
提问 私信
  • 博客:1,080,422
    社区:200
    1,080,622
    总访问量
  • 251
    原创
  • 713
    粉丝
  • 35
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2013-04-27

个人简介:路漫漫其修远兮,吾将上下而求索。

博客简介:

u010480899的博客

查看详细资料
个人成就
  • 获得475次点赞
  • 内容获得146次评论
  • 获得2,134次收藏
  • 代码片获得1,555次分享
  • 博客总排名1,779,107名
创作历程
  • 1篇
    2018年
  • 72篇
    2017年
  • 252篇
    2016年
成就勋章
TA的专栏
  • MT766
    12篇
  • Linux应用
    6篇
  • 华为机试-在线训练
    99篇
  • C算法应用
    8篇
  • MatLab数学建模
    18篇
  • 读书心得
    1篇
  • ACM心路
    31篇
  • 深度学习与计算机视觉
    11篇
  • 面试经典
  • 滤波器算法
    7篇
  • Python
    21篇
  • 编程语言
  • 智能交通系统
    2篇
  • 机器学习系列
    16篇
  • CSP认证
    7篇
  • 粒子群算法
    9篇
  • 遗传算法
    14篇
  • 蓝桥杯
    49篇
  • 数学原理
    4篇

TA关注的专栏 3

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    深度学习数据分析
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

U盘恢复正常使用方法

U盘在使用的过程中,有时会遇到插入U盘后提示需要格式化的情况。这对于U盘中存储有大量有用数据,又急需使用U盘就比较麻烦了。网上有很多可用的恢复软件,例如:DiskGenius等,但是这些软件有时操作起来不是很方便。这里,给大家介绍一个基于DOS的解决办法,操作起来比较方便,可以解决恢复U盘使用的问题。当然,这种方法对于大多数的U盘分区丢失是有效的,要是不行,可能需要使用其他的方法。解决方法如下,在...
原创
发布博客 2018.08.08 ·
1152 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

Matlab绘制动态图的两种方式(参考)

第一种方式close all;clear all;clc;clf;xlabel('X轴');ylabel('Y轴');box on;axis([-2,2,-2,2]);axis equal;pause(1);h=line(NaN,NaN,'marker','o','linesty','-','erasemode','none');t=6*pi*(0:0.02:1);for n
原创
发布博客 2017.10.14 ·
106272 阅读 ·
67 点赞 ·
5 评论 ·
395 收藏

差分进化算法

差异演化(Differential Evolution,DE)是一种基于群体差异的演化算法,该算法是Rainer Storn和Kenneth Price在1996年为求解切比雪夫多项式而提出的。差异演化算法在当年首届IEEE演化计算大赛中表现超群,随后在各个领域得到了广泛应用。差分算法的基本思想:应用当前种群个体的差异来重组得到中间种群,然后应用子代个体与父代个体竞争来获得新一代种群。差异演化
原创
发布博客 2017.06.28 ·
25060 阅读 ·
11 点赞 ·
5 评论 ·
90 收藏

DE(差分进化)优化算法MATLAB源码详细中文注解

以优化SVR算法的参数c和g为例,对DE(差分进化)算法MATLAB源码进行了详细中文注解。 完整程序和示例文件地址:http://download.csdn.net/detail/u013337691/9671714 百度云链接: http://pan.baidu.com/s/1dEYAHS9 密码: 6xw5function [bestc,bestg,test_pre]=my_DE_SVR
转载
发布博客 2017.06.27 ·
5030 阅读 ·
2 点赞 ·
0 评论 ·
26 收藏

线性代数的本质

在机器学习领域,线性代数无处不在,偶尔在网上看到这篇文章,觉得很好,就转过来了,希望能对大家有所启示。 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另
转载
发布博客 2017.06.27 ·
862 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

差分进化算法(Differential Evolution)

差分进化算法(Differential Evolution,DE)和GA,PSO,ACO等进化算法一样,都是基于群体智能的随机并行优化算法,通过模仿生物群体内个体间的合作与竞争产生的启发式群体智能来指导优化搜索。算子课上我讲的PPT,主题是查分演化计算,用到了变异算子,交叉算子和选择算子。复盘分析差分进化与遗传算法相似,这一点,对遗传算法稍微了解的人都会有这样的疑问。该PPT未对二者的区别和联系进
转载
发布博客 2017.06.27 ·
3351 阅读 ·
5 点赞 ·
0 评论 ·
16 收藏

傅里叶变换的意义

傅里叶变换就是将满足一定条件的某个函数表示成三角函数(正弦/余弦)或其积分的线性组合。傅里叶变换可以看出一种工具,将一个连续的信号(不方便处理)转换成一个个小信号的叠加(好处理)。就是将信号完成从时域表示到频域表示。信号本质没有变,转换后有助于后续处理。来看一个图,原图1-4及代码转自http://fashionxu.bokee.com/4632908.html ,第5个图是我加的。   图3
转载
发布博客 2017.03.29 ·
10705 阅读 ·
3 点赞 ·
1 评论 ·
18 收藏

深入浅出的讲解傅里叶变换

文章来自:http://www.elecfans.com/engineer/blog/20140527344277.html我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……  这篇文章的核心思想就是:  要让读者在不看任何数学公式的情况下理解傅里叶分析。  傅里叶分析不仅仅是一个数学工具,更是一种可
转载
发布博客 2017.03.29 ·
563 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

Matlab高级绘图

转自:Matlab绘图高级部分 - JeromeBlog(http://bluereader.org/article/25129)图形是呈现数据的一种直观方式,在用Matlab进行数据处理和计算后,我们一般都会以图形的形式将结果呈现出来。尤其在论文的撰写中,优雅的图形无疑会为文章加分。本篇文章非完全原创,我的工作就是把见到的Matlab绘图代码收集起来重新跑一遍,修改局部错误,然后将所有的图贴上来供
转载
发布博客 2017.03.29 ·
1214 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

Matlab绘图系列之高级绘图

Matlab绘图系列之高级绘图原帖地址:http://blog.163.com/enjoy_world/blog/static/115033832007865616218/Matlab绘图 2007-09-06 17:06:16 阅读
转载
发布博客 2017.03.29 ·
1376 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

特征工程简介

特征工程简介原帖地址:http://zr9558.com/2016/01/26/feature_engineering_introduction/(I)特征工程可以解决什么样的问题?特征工程是一个非常重要的课题,是机器学习中不可缺少的一部分,但是它几乎很少出现于机器学习书本里面的某一章。在机器学习方面的成功很大程度上在于如果使用特征工程。在机器学习中,经常是用一个预测模型(线性回归,逻辑回归,SV
转载
发布博客 2017.03.16 ·
643 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

特征工程

七月在线4月机器学习算法班课程笔记——No.6 前言  机器学习领域的大神Andrew Ng(吴恩达)老师曾说“Coming up with features is difficult, time-consuming, requires expert knowledge. “Applied machine learning” is basically feature engineering. ”表
转载
发布博客 2017.03.16 ·
866 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

算法训练 操作格子

问题描述有n个格子,从左到右放成一排,编号为1-n。共有m次操作,有3种操作类型:1.修改一个格子的权值,2.求连续一段格子权值和,3.求连续一段格子的最大值。对于每个2、3操作输出你所求出的结果。输入格式第一行2个整数n,m。接下来一行n个整数表示n个格子的初始权值。接下来m行,每行3个整数p,x,y,p
转载
发布博客 2017.03.11 ·
487 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法训练 关联矩阵

问题描述  有一个n个结点m条边的有向图,请输出他的关联矩阵。输入格式  第一行两个整数n、m,表示图中结点和边的数目。n  接下来m行,每行两个整数a、b,表示图中有(a,b)边。  注意图中可能含有重边,但不会有自环。输出格式  输出该图的关联矩阵,注意请勿改变边和结点的顺序。样例输入5 91 23 11 52 5
原创
发布博客 2017.03.11 ·
809 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法训练 矩阵乘法

问题描述  输入两个矩阵,分别是m*s,s*n大小。输出两个矩阵相乘的结果。输入格式  第一行,空格隔开的三个正整数m,s,n(均不超过200)。  接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j)。  接下来s行,每行n个空格隔开的整数,表示矩阵B(i,j)。输出格式  m行,每行n个空格隔开的整数,输出相乘後的矩阵C(i,j)的值。
原创
发布博客 2017.03.11 ·
456 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法训练 字串统计

问题描述  给定一个长度为n的字符串S,还有一个数字L,统计长度大于等于L的出现次数最多的子串(不同的出现可以相交),如果有多个,输出最长的,如果仍然有多个,输出第一次出现最早的。输入格式  第一行一个数字L。  第二行是字符串S。  L大于0,且不超过S的长度。输出格式  一行,题目要求的字符串。  输入样例1:  4  bbaab
原创
发布博客 2017.03.11 ·
698 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法训练 出现次数最多的整数

问题描述  编写一个程序,读入一组整数,这组整数是按照从小到大的顺序排列的,它们的个数N也是由用户输入的,最多不会超过20。然后程序将对这个数组进行统计,把出现次数最多的那个数组元素值打印出来。如果有两个元素值出现的次数相同,即并列第一,那么只打印比较小的那个值。  输入格式:第一行是一个整数N,N £ 20;接下来有N行,每一行表示一个整数,并且按照从小到大的顺序排列。  输出格
原创
发布博客 2017.03.11 ·
549 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法训练 Anagrams问题

问题描述  Anagrams指的是具有如下特性的两个单词:在这两个单词当中,每一个英文字母(不区分大小写)所出现的次数都是相同的。例如,“Unclear”和“Nuclear”、“Rimon”和“MinOR”都是Anagrams。编写一个程序,输入两个单词,然后判断一下,这两个单词是否是Anagrams。每一个单词的长度不会超过80个字符,而且是大小写无关的。  输入格式:输入有两行,分
原创
发布博客 2017.03.11 ·
396 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法训练 2的次幂表示

问题描述  任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。  将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0  现在约定幂次用括号来表示,即a^b表示为a(b)  此时,137可表示为:2(7)+2(3)+2(0)  进一步:7=2^2+2+2^0 (2^1用2表示)  3=2
原创
发布博客 2017.03.11 ·
391 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法训练 排序

问题描述  编写一个程序,输入3个整数,然后程序将对这三个整数按照从大到小进行排列。  输入格式:输入只有一行,即三个整数,中间用空格隔开。  输出格式:输出只有一行,即排序后的结果。  输入输出样例样例输入9 2 30样例输出30 9 2解答代码#include#include#include#include#define
原创
发布博客 2017.03.11 ·
427 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多