HM代码的使用

HM代码自带了 software manual即参考软件手册,这个手册的主要内容包括HM的下载地址和使用方法,更重要的是,里面包含了对配置文件各个参数的详细解释,可以说是使用HM的必备手册。

在VS2013下编译HM

开下载下来的HM文件夹,工程存放在build目录下,选择对应版本vs的工程。

step1:编译工程,右击解决方案->生成解决方案

正常的话,等待片刻所有工程都能得到正确的编译,并最终在HM文件夹下生成bin目录,在目录xxx\bin\vc13\Win32\Debug下,最终会生成两个可执行文件,TAppEncoder.exe和TAppDecoder.exe,分别问编码和解码的可执行文件.

step2:输入运行时的命令参数 and 指定工程的工作目录

右击“TAppEncoder”->“Set as Startup Project”, 接着,再次右击“TAppEncoder”->“Properties”->“Configuration Properties”->“Debugging”,在弹出的右窗口中有这么两行需要关注:“Command Arguments““Working Directory”。前者用于输入运行时的命令参数,后者用于指定工程的工作目录。工作目录,将其设置为xxx\bin\vc9\Win32\Debug。接下来,为了方便起见,我们可以把需要使用到的配置文件、yuv测试序列复制到该目录下。我们需要至少使用两个配置文件,即在HM文件夹的cfg目录中的某一个配置文件如encoder_intra_main.cfg,以及per-sequence目录下的某一个配置文件如BasketballDrill.cfg。前者主要用于配置编码器的各种编码参数,后者主要用于指定输入yuv测试文件,分辨率,待编码帧数等等。在完成了上述步骤之后,我们就可以在“Command Arguments”一栏填入-c encoder_intra_main.cfg -c BasketballDrill.cfg,表明这个编码器使用这两个配置文件所指定的参数进行编码。

原文链接

### HM Code 中的全局搜索实现 在探讨HM (Human Motion) 代码中的全局搜索实现时,可以从多个角度理解这一过程。全局搜索通常用于优化问题,在三维人体姿态估计领域也不例外。 对于HM代码中的全局搜索实现,主要依赖于神经网络模型来完成姿态预测的任务[^1]。具体来说: - **初始化参数设置** 为了启动全局搜索算法,首先需要定义初始条件和边界范围。这些参数可能包括但不限于学习率、迭代次数以及收敛阈值等超参数配置。 - **损失函数构建** 采用特定形式的损失函数作为评估标准,指导整个训练过程中模型权重更新的方向。常见的做法是以最小化误差为目标来进行反向传播调整。 - **数据预处理与增强** 输入到模型的数据集会经过一系列变换操作以提高泛化能力并防止过拟合现象发生。这一步骤可以视为广义上的“搜索空间扩展”。 然而值得注意的是,“全局搜索”一词在此背景下更多指的是通过深度学习框架下的随机梯度下降(SGD)及其变种方法寻找最优解的过程,并不是传统意义上的启发式或穷举式的全局搜索算法[^2]。 ```python import torch.optim as optim # 定义优化器, 这里使用AdamW作为示例 optimizer = optim.AdamW(model.parameters(), lr=0.001) for epoch in range(num_epochs): # 前向传递计算loss output = model(input_data) loss = criterion(output, target_labels) # 反向传播及参数更新 optimizer.zero_grad() loss.backward() optimizer.step() print(f'Epoch {epoch}, Loss: {loss.item()}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值