/*求最远曼哈顿距离,对于一个n维的空间,其中两点的曼哈顿距离为:|x1-y1|+|x2-y2|+|x3-y3|+|x4-y4|+……+|xn-yn| (两点的坐标分别为(x1,x2,……,xn)、(y1,y2,……,yn))
以下以二维平面为例研究:
设距离最远的两点为i,j,可知所求的最大距离必定有以下四种形式之一:
(xi-xj)+(yi-yj), (xj-xi)+(yi-yj), (xi-xj)+(yj-yi), (xj-xi)+(yj-yi) 变形一下,把相同点的坐标放到一起,即
(xi+yi)-(xj+yj), (-xi+yi)-(-xj+yj), (xi-yi)-(xj-yj), (-xi-yi)-(-xj-yj) 再变一下,把中间变成‘+',即
(xi+yi)+(-xj-yj), (-xi+yi)+(xj-yj), (xi-yi)+(-xj+yj),(-xi-yi)+(xj+yj)
由此,可以发现一个规律,即去绝对值之后把同一点的坐标放在一起,对应坐标的符号总是相反的,如(-xi+yi)与(xj-yj),
假如我们用0表示负号,1表示正号,则(-xi+yi)与(xj-yj)两个括号内的符号可以表示为:01和10
当你多举几个例子之后,就会发现,对于一个确定的维数D,符号转化成的二进制数,它们的和总是一个定值,即2^d-1,
这就说明了,当我们知道了前一个点去绝对值之后的符号,就可以知道第二个点去绝对值后的符号是怎样的
于是只要对所有的点(xi,yi),依次计算出(xi+yi),(xi-yi),(-xi+yi),(-xi-yi)这四种形式,然后把每个点i算出来的这四种情况的存入对应的优先队列即可
以下以二维平面为例研究:
设距离最远的两点为i,j,可知所求的最大距离必定有以下四种形式之一:
(xi-xj)+(yi-yj), (xj-xi)+(yi-yj), (xi-xj)+(yj-yi), (xj-xi)+(yj-yi) 变形一下,把相同点的坐标放到一起,即
(xi+yi)-(xj+yj), (-xi+yi)-(-xj+yj), (xi-yi)-(xj-yj), (-xi-yi)-(-xj-yj) 再变一下,把中间变成‘+',即
(xi+yi)+(-xj-yj), (-xi+yi)+(xj-yj), (xi-yi)+(-xj+yj),(-xi-yi)+(xj+yj)
由此,可以发现一个规律,即去绝对值之后把同一点的坐标放在一起,对应坐标的符号总是相反的,如(-xi+yi)与(xj-yj),
假如我们用0表示负号,1表示正号,则(-xi+yi)与(xj-yj)两个括号内的符号可以表示为:01和10
当你多举几个例子之后,就会发现,对于一个确定的维数D,符号转化成的二进制数,它们的和总是一个定值,即2^d-1,
这就说明了,当我们知道了前一个点去绝对值之后的符号,就可以知道第二个点去绝对值后的符号是怎样的
于是只要对所有的点(xi,yi),依次计算出(xi+yi),(xi-yi),(-xi+yi),(-xi-yi)这四种形式,然后把每个点i算出来的这四种情况的存入对应的优先队列即可
code:*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
#define clr(a, x) memset(a, x, sizeof(a))
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define REP(i,a,b) for(int i=a;i<=b;i++)
const int maxn = 60010;
struct pp
{
int d;
int id;
bool operator<(const pp a)const
{
return d<a.d;
}
};
bool vis[maxn];
int p[10];
int main()
{
int n,k;
// printf("%d %d\n",2,2^((1<<2)-1));
while(~scanf("%d %d",&n,&k))
{
priority_queue<pp>pq[1<<k];
clr(vis,0);
int all=(1<<k)-1;
for(int i=1;i<=n;i++)
{
int op;
scanf("%d",&op);
if(op)
{
int del;
scanf("%d",&del);
vis[del]=1;
}
else
{
for(int j=0;j<k;j++)
scanf("%d",&p[j]);
for(int s=0;s<=all;s++)
{
pp t;
t.d=0;
t.id=i;
for(int j=0;j<k;j++)
if(s&(1<<j)) t.d+=p[j];
else t.d-=p[j];
//printf("d=%d id=%d \n",t.d,t.id);
pq[s].push(t);
}
}
int ans=0;
for(int s=0;s<=all;s++)
{
pp t1,t2;
int t=all-s;
while(!pq[s].empty())
{
t1=pq[s].top();
if(!vis[t1.id]) break;
pq[s].pop();
}
while(!pq[t].empty())
{
t2=pq[t].top();
if(!vis[t2.id]) break;
pq[t].pop();
}
if(!pq[s].empty()&&!pq[t].empty())
ans=max(ans,t1.d+t2.d);
}
printf("%d\n",ans);
}
}
}