查找组成一个偶数最接近的两个素数

该博客介绍了一个功能,即找到组成给定偶数的两个素数,使得它们的差值最小。举例说明,对于偶数20,最接近的素数对是7和13。实现思路包括首先找到所有满足条件的素数,然后通过循环找到差值最小的素数对。优化算法中,判断素数时只检查到数的一半,以提高效率。
摘要由CSDN通过智能技术生成

功能:查找组成一个偶数最接近的两个素数

任意一个偶数(大于2)都可以由2个素数组成,组成偶数的2个素数有很多种情况,本题目要求输出组成指定偶数的两个素数差值最小的素数对
//实例:20  输出:7 13

思路:先找出满足条件自身和sum-自身都是素数的数,之后再运用循环来找出距离最近的两个素数

参考代码:

//功能:任意一个偶数(大于2)都可以由2个素数组成,组成偶数的2个素数有很多种情况,本题目要求输出组成指定偶数的两个素数差值最小的素数对
//实例:20  输出:7 13

#include <iostream>
using namespace std;

//判断一个数是否为素数
bool JudgIsPrime(const int a)
{
	for(int i = 2;i <= a/2; i++)
	{
		if(a % i == 0)
			return 0;
	}
	return 1;
}

int main()
{
	int b;
	cin >> b;

	//非偶数异常输入
	while(b % 2 != 0)
		return 0;

	int j,distance,t = 0;
	int min = 0;
	for(j = 2; j <= b/2; j++)
	{
		if (JudgIsPrime(j) && JudgIsPrime(b - j))
		{
			distance = b - j -j;
			if (min==0 || min > distance)
			{
				min = distance;
				t = j;
			}
		}
	}
	cout << t << endl;
	cout << (b - t) << endl;
}


运行结果:



算法巧妙之处:

1)判断是否为素数时,只需要设置初始为2,最大值为a/2,而不是a这样大大提高运算效率。

bool JudgIsPrime(const int a)
{
	for(int i = 2;i <= a/2; i++)
	{
		if(a % i == 0)
			return 0;
	}
	return 1;
}

2)找出距离最短的distance,很巧妙设置初始距离min = 0;之后利用一个if(min == 0 || min > distance)逻辑运算条件来覆盖min,同时更新min,并且利用新的参数t保存j.(这点非常重要)

这里还需要强调一点这个if不能用while,否则就死循环了,要区分if和while的区别。

if (JudgIsPrime(j) && JudgIsPrime(b - j))
{
	distance = b - j -j;
	if (min==0 || min > distance)
	{
		min = distance;
		t = j;
	}
}

                                                                                                                                                                  ——To_捭阖_youth  0:02

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值