一维数组的最大子段和

	public static int maxSubArray(int a[], int n) {
		int sum = 0, max = -10;
		for (int i = 0; i < n; i++) {
			if (sum > 0)
				sum += a[i]; //用变量sum记住a[i]和a[i]之前数组元素的和。
			else
				sum = a[i];
			if (sum > max)
				max = sum; 
		}
		return max;
	}

解释说明:

假设下标[m,n]这一段是最大值段,即b>sum,sum=b

①如果往后加,加的是负数,则b一直小于sum,则表示[m,n]这一段一直为最大值段,最大值sum不变

②如果加到后面某一值(下标p)时,b突然大于sum,则表示产生了新的最大值段[m,p],重新把b赋给sum

③如果加到后面某一值(下标q)时,b变成负的,则表示[m,q]这一段元素之和是负数,这一部分就不能用了,因为无论下个数是多少,相加后都会变小。所以把q位置的下一个元素       赋给b,从这里再重新开始计算。但最大值不变还是sum,最大值段也还是原来的[m,n]。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最大子段和动态规划的推广可以通过以下两种方式进行: 1. 最大子段和多维数组:最大子段和问题通常是应用在一维数组中,但是也可以推广到多维数组中。例如,我们可以将二维数组看作一个矩阵,然后将最大子段和问题扩展为寻找矩阵中的最大子矩阵和。 对于多维数组,我们可以使用类似的动态规划思想解决问题。定义一个辅助数组dp,其中dp[i][j]表示以元素[i][j]为右下角的子矩阵的最大和。然后,我们可以通过以下递推关系计算dp[i][j]: dp[i][j] = max(dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1], 0) + matrix[i][j] 其中,matrix[i][j]表示原始矩阵的元素值。最后,我们只需要遍历dp数组,找到其中的最大值即可得到最大子矩阵和。 2. 最大子段和和其他问题的结合:最大子段和问题可以与其他问题结合,形成更复杂的动态规划解法。例如,可以将最大子段和问题与最长递增子序列问题结合,求解在一个序列中既要满足递增条件,又要求和最大的子序列。 这种结合的方法需要根据具体问题进行调整,但基本思路是类似的:使用动态规划来构建辅助数组,然后通过递推关系计算最优解。最终,可以通过遍历辅助数组或者记录状态转移路径的方式,得到最优解。 总之,最大子段和问题的动态规划可以通过推广到多维数组及与其他问题结合的方式来应用于更广泛的场景中。具体的解法需要根据具体情况进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值