1024. Permutations
Time limit: 2.0 second
Memory limit: 64 MB
Memory limit: 64 MB
Background
We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows:
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc.
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(
n) is a permutation then P(P(
n)) is a permutation as well. In our example (check it by yourself)
It is natural to denote this permutation by P
2(
n) = P(P(
n)). In a general form the definition is as follows: P(
n) = P
1(
n), P
k(
n) = P(P
k-1(
n)).
Among the permutations there is a very important one — that moves nothing:
It is clear that for every
k the following relation is satisfied: (E
N)
k = E
N. The following less trivial statement is correct (we won’t prove it here, you may prove it yourself incidentally):
Let P(n) be some permutation of an N elements set. Then there exists a positive integer k, that Pk = EN.
The least positive integer
k such that P
k = E
N is called an order of the permutation P.
Problem
The problem that your program should solve is formulated now in a very simple manner:
“Given a permutation find its order.”
Input
The first line contains the only integer
N (1 ≤
N ≤ 1000), that is a number of elements in the set that is rearranged by this permutation. In the second line there are
N integers of the range from 1 up to
N, separated by a space, that define a permutation — the numbers P(1), P(2),…, P(
N).
Output
You should write the order of the permutation. You may consider that an answer shouldn’t exceed 10
9.
Sample
input | output |
---|---|
5 4 1 5 2 3 | 6 |
题意 :
就是问能经过多少次置换成为1,2,3,。。n的这样的顺序序列。
置换在离散数学里都学过,很简单,这里找出所有的循环节,然后求出所有循环节的最小公倍数就可以了。
但是在这里,直接求最小公倍数WA,因为有可能溢出。所以要每次算出最大公约数,然后每次计算。
//给出一组排列,问多少次转换后能够得到顺序序列
// 有点像离散数学中的 排列 。。。每次都是针对原始排列进行的,不然会出现 变不到顺序序列的情况。
//找出最大的循环节 求多个循环节的最小公倍数
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int a[1005];
int b[1000];
bool vis[1005];
int gcd(int a,int b)
{
if(a<b)swap(a,b);
if(b==0)return a;
else return gcd(b,a%b);
}
int lcm(int a,int b)
{
return a/gcd(a,b)*b;
}
int main()
{
// freopen("q.in","r",stdin);
int n;
int i,j;
memset(vis,0,sizeof(vis));
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
int mmax=1;
int len=0;
for(i=1;i<=n;i++)
{
if(!vis[i])
{
int cnt=1;
int k=i;
vis[k]=1;
while(i!=a[k])
{
cnt++;
k=a[k];
vis[k]=1;
}
b[len++]=cnt;
}
}
int tmp=b[0];
for(i=1;i<len;i++)
{
mmax=lcm(tmp,b[i]);
tmp=mmax; // 最后应该输出tmp 而不是 mmax
}
cout<<tmp<<endl;
/* mmax=b[0];
for(i=1;i<len;i++) //为何中间加了变量就WA ???
{
mmax=lcm(mmax,b[i]);
}*/
cout<<mmax<<endl;
}