最长回文字符串

动态规划:

//使用flag[i][j]记录s[i--j]是否是一个回文串
//然后逐渐增加i--j的长度
//若s[i]==s[j]&&flag[i+1][j-1]则为回文串

bool flag[1010][1010];
string longestPalindrome(string s)
{
    int len = s.length();
    memset(flag,false,sizeof(flag));
    int maxLength=1;
    int index=0;
    for(int i=0;i<len;i++)
    {
        flag[i][i]=true;
    }
    for(int i=0;i<len-1;i++)
    {
        if(s[i]==s[i+1])
        {
            flag[i][i+1]=true;
            index=i;
            maxLength=2;
        }
    }
    for(int l=3;l<=len;l++)
    {
        int j=0;
        for(int i=0;i<len-l+1;i++)
        {
            j=i+l-1;
            if(s[i]==s[j]&&flag[i+1][j-1])
            {
                flag[i][j]=true;
                maxLength=l;
                index=i;
            }
        }
    }
    //cout<<maxLength<<endl;
    return s.substr(index,maxLength);
}

中心扩展:

//指定下标i,之后像两边扩展,判断是否相等
void judge(int &l,int &r,string s,int len)
{
    while(l>=0&&r<len&&s[l]==s[r])
    {
        l--,r++;
    }
    l++,r--;
}

string longestPalindrome(string s)
{
    int len=s.length();
    int maxLength=1;
    int index=0;
    int l,r;
    for(int i=0;i<len;i++)
    {
        l=r=i;
        judge(l,r,s,len);
        if(r-l+1>maxLength)
        {
            maxLength=r-l+1;
            index=l;
        }
        l=i;r=i+1;
        judge(l,r,s,len);
        if(r-l+1>maxLength)
        {
            maxLength=r-l+1;
            index=l;
        }
    }
    return s.substr(index,maxLength);
}

Manacher算法

//Manacher算法
//将串“1212321”处理成“#1#2#1#2#3#2#1#”
//求解p[i]为处理后的串下标i为中心的回文串的边界到i的长度
//有趣的是p[i]-1为对应的原串的回文串的长度
//设mx为中心下标id的串的右侧边界+1
//若i<mx,i对于中心id的对称下标为j=2*id-i
//则p[i]=min(p[j],mx-i)
//若i>=mx,则p[i]=1
//由于代码中的while循环一直从mx开始向右遍历
//故算法复杂度为o(n),看代码更有助于理解
int p[2010];

string longestPalindrome(string s)
{
    int len=s.length();
    if(len==0) return string("");
    string str = "$#";
    for(int i=0;i<len;i++)
    {
        str+=s[i];
        str+="#";
    }
    //cout<<str<<endl;
    len=str.length();
    int id=1;
    int mx=1;
    p[0]=p[1]=1;
    for(int i=1;i<len;i++)
    {
        int j=2*id-i;
        if(i<mx)
        {
            p[i]=p[j]<=(mx-i)?p[j]:mx-i;
        }else
        {
            p[i]=1;
        }

        while((i-p[i]>0)&&(i+p[i]<len)&&(str[i-p[i]]==str[i+p[i]]))
        {
            p[i]++;
        }

        if(i+p[i]>mx)
        {
            mx=i+p[i]-1;
            id=i;
        }
    }

    int index=0;
    for(int i=1;i<len;i++)
    {
        if(p[i]>p[index]) index=i;
    }

    string retStr = "";
    for(int i=index-p[index]+1;i<index+p[index];i++)
    {
        if(str[i]!='#') retStr+=str[i];
    }
    return retStr;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值