# Codeforces Round #157 (Div. 1)B. Little Elephant and Elections 数位dp好

## B. Little Elephant and Elections

There have recently been elections in the zoo. Overall there were 7 main political parties: one of them is the Little Elephant Political Party, 6 other parties have less catchy names.

Political parties find their number in the ballot highly important. Overall there are m possible numbers: 1, 2, …, m. Each of these 7 parties is going to be assigned in some way to exactly one number, at that, two distinct parties cannot receive the same number.

The Little Elephant Political Party members believe in the lucky digits 4 and 7. They want to evaluate their chances in the elections. For that, they need to find out, how many correct assignments are there, such that the number of lucky digits in the Little Elephant Political Party ballot number is strictly larger than the total number of lucky digits in the ballot numbers of 6 other parties.

Help the Little Elephant Political Party, calculate this number. As the answer can be rather large, print the remainder from dividing it by 1000000007(109+7)$1000000007 (10^9 + 7)$.
Input

A single line contains a single positive integer m(7m109)$(7 ≤ m ≤ 10^9)$— the number of possible numbers in the ballot.
Output

In a single line print a single integer — the answer to the problem modulo 1000000007(109+7)$1000000007 (10^9 + 7)$.
Sample test(s)
Input

7

Output

0

Input

8

Output

1440

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=20;
const int MOD=1e9+7;
int M;
int dig[maxn];
LL dp[maxn][maxn][maxn];
LL sum[maxn];
int len;
LL dfs(int cur,int e,int S,int K)
{
if(cur<0)return S==K;
if(!e&&dp[cur][S][K]!=-1)
return dp[cur][S][K];
int end=(e?dig[cur]:9);
LL ans=0;
for(int i=0;i<=end;i++)
{
ans+=dfs(cur-1,e&&i==end,S+(i==4||i==7),K);
ans%=MOD;
}
if(!e)dp[cur][S][K]=ans;
return ans;
}
void solve(int x)
{
len=0;
memset(dp,-1,sizeof(dp));
while(x)
{
dig[len++]=x%10;
x/=10;
}
for(int i=0;i<=len;i++)
sum[i]=dfs(len-1,1,0,i);
sum[0]--;//把0也算进去了
}
LL solve(int num,int pos)
{
if(pos<=0)return 1;
LL ans=0;
for(int i=0;i<=num;i++)
{
if(sum[i]<=0)continue;
sum[i]--;
ans=(ans+(1+sum[i])*solve(num-i,pos-1))%MOD;
sum[i]++;
}
return ans;
}
int main()
{
scanf("%d",&M);
solve(M);
LL ans=0;
for(int i=1;i<=len;i++)
ans=(ans+sum[i]*solve(i-1,6))%MOD;
cout<<ans<<endl;
return 0;
}

#### [Codeforces 258B & 259 D]Little Elephant and Elections 数位dp+dfs

2014-07-09 08:43:27

#### codeforces 258B Little Elephant and Elections 数位DP+DFS

2013-02-04 00:19:56

#### Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp

2016-05-14 10:42:01

#### CF-Codeforces Round #483 (Div. 2) A~D

2018-05-16 00:48:25

#### Codeforces Round #471 (Div. 2)

2018-03-27 23:23:41

#### Codeforces Round #295 (Div. 2) B. Two Buttons

2016-07-29 10:19:26

#### CodeCraft-18 and Codeforces Round #458(Div. 1+Div. 2,combined)

2018-01-22 17:04:06

#### Codeforces Round #464 (Div. 2) B. Hamster Farm

2018-02-18 12:28:34

#### Codeforces Educational Codeforces Round 41 (Rated for Div. 2) B. Lecture Sleep

2018-04-05 10:35:27

#### Codeforces Round #205 (Div. 2) CodeForces 353B Two Heaps

2016-08-03 23:28:17