hdu 4427 Math Magic

       一个长了一张数学脸的dp!!dp[ i ][ s ][ t ] 表示第 i 个数,sum为 s ,lcm下标为 t 时的个数。显然,一个数的因子的lcm还是这个数的因子,所以我们的第三维用因子下标代替lcm,可以有效的减少枚举量。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdio>
#include<cmath>
#include<set>
#define LL long long
#define CLR(a, b) memset(a, b, sizeof(a))
using namespace std;


const int N = 1010;
const int MOD = 1e9 + 7;


int k, num, m;
int dp[2][N][40];
int ok[N], f[N][N];


int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}


int lcm(int a, int b)
{
    return a / gcd(a, b) * b;
}


int main()
{
    //freopen("input.txt", "r", stdin);
    int n, i, j, s, t,  tmd = 0;
    while(scanf("%d%d%d", &n, &m, &k) != EOF)
    {
        CLR(dp, 0);num = 0;
        for(i = 1; i <= m; i ++)
        {
            if(m % i == 0) ok[num ++] = i;
        }//num不超过32
        for(i = 0; i < num; i ++)
        {
            for(j = 0; j < num; j ++)
            {
                t = lcm(ok[i], ok[j]);
                for(s = 0; s < num; s ++)
                {
                    if(ok[s] == t)
                    {
                        f[i][j] = s;
                        break;
                    }
                }
            }
        }
        for(j = 0; j < num; j ++)
        {
            dp[0][ok[j]][j] = 1;
        }
        for(i = 1; i < k; i ++)
        {
            for(s = 0; s <= n; s ++)//一定记得初始化
            {
                for(t = 0; t < num; t ++)
                {
                    dp[i & 1][s][t] = 0;
                }
            }
            for(j = 0; j < num; j ++)
            {
                for(s = i; s <= n - (k - i - 1) - ok[j]; s ++)
                {
                    for(t = 0; t < num; t ++)
                    {
                        dp[i&1][s+ok[j]][f[t][j]]= (dp[i&1][s+ok[j]][f[t][j]]+dp[1-(i&1)][s][t]) % MOD;
                    }
                }
            }
        }
        printf("%d\n", dp[(k - 1) & 1][n][num - 1]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值