KNN / SVM 手写数字识别-PCA降维

本文介绍了使用PCA降维技术处理MNIST和USPS手写数字识别任务。PCA通过去除平均值、计算协方差矩阵及特征向量,保留主要特征,简化数据集并提高机器学习算法的准确性。KNN和SVM在此过程中得到优化。
摘要由CSDN通过智能技术生成

一. 问题分析

采用机器学习算法对usps和mnist两个数据集完成手写数字识别任务。

1.1. 数据集介绍

  • MNIST 

MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)。训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员,测试集(test set) 也是同样比例的手写数字数据。训练数据集共包含 60,000 个样本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值