一. 问题分析
采用机器学习算法对usps和mnist两个数据集完成手写数字识别任务。
1.1. 数据集介绍
- MNIST
MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)。训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员,测试集(test set) 也是同样比例的手写数字数据。训练数据集共包含 60,000 个样本。

本文介绍了使用PCA降维技术处理MNIST和USPS手写数字识别任务。PCA通过去除平均值、计算协方差矩阵及特征向量,保留主要特征,简化数据集并提高机器学习算法的准确性。KNN和SVM在此过程中得到优化。
最低0.47元/天 解锁文章

1390

被折叠的 条评论
为什么被折叠?



