uva 11426 - GCD - Extreme (II) 欧拉函数

题意:

要你求出gcd(1,2) + gcd(1, 3) + gcd(2, 3) + gcd(1, 4) + gcd(2, 4) + ... + gcd(n-1, n)

现在假设  d[n] = gcd(1, n) + gcd(2, n) + .. + gcd(n-1, n)

题目要求的ans[n] = ans[n-1] + d[n]

求d[n] 可以枚举n的因子,然后利用欧拉函数求出所有的gcd(i, n),欧拉函数可以预处理筛选~这题还是很巧妙的


#include <stdio.h>
#define LL long long

const int maxn = 4001000;
int phi[maxn];
LL d[maxn], print[maxn];

void get_euler() {
	int i, j;
	phi[1] = 1;
	for(i = 2;i <= maxn; i++) if(!phi[i])
		for(j = i;j <= maxn; j += i) {
			if(!phi[j])	phi[j] = j;
			phi[j] = phi[j] - phi[j]/i;
		}
}

int main() {
	get_euler();
	int i, j, n;
	for(i = 1;i*i <= maxn; i++)
		for(j = i*2;j <= maxn;j += i)	{
			if(i*i == j || i == 1)
				d[j] += phi[j/i]*i;
			else if(i*i < j)
				d[j] += (LL)phi[j/i]*i + (LL)phi[i]*j/i;
		}
	print[2] = d[2];
	for(i = 3;i <= maxn; i++)	print[i] = print[i-1]+d[i];
	while(scanf("%d", &n) != -1 && n) {
		printf("%lld\n", print[n]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值