ARTS-34(剑指 Offer 04. 二维数组中的查找,CPU cache知识,量化蒸馏,N2N讲解,职业发展规划 )

Algorithm

在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

示例:

现有矩阵 matrix 如下:

[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。

给定 target = 20,返回 false。

限制:

0 <= n <= 1000

0 <= m <= 1000

思路:
线性查找

由于给定的二维数组具备每行从左到右递增以及每列从上到下递增的特点,当访问到一个元素时,可以排除数组中的部分元素。

从二维数组的右上角开始查找。如果当前元素等于目标值,则返回 true。如果当前元素大于目标值,则移到左边一列。如果当前元素小于目标值,则移到下边一行。

可以证明这种方法不会错过目标值。如果当前元素大于目标值,说明当前元素的下边的所有元素都一定大于目标值,因此往下查找不可能找到目标值,往左查找可能找到目标值。如果当前元素小于目标值,说明当前元素的左边的所有元素都一定小于目标值,因此往左查找不可能找到目标值,往下查找可能找到目标值。

若数组为空,返回 false
初始化行下标为 0,列下标为二维数组的列数减 1
重复下列步骤,直到行下标或列下标超出边界
获得当前下标位置的元素 num
如果 num 和 target 相等,返回 true
如果 num 大于 target,列下标减 1
如果 num 小于 target,行下标加 1
循环体执行完毕仍未找到元素等于 target ,说明不存在这样的元素,返回 false`

class Solution {
public:
    bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
        if (matrix.size()==0)
            return false;
        int r = 0, c = matrix[0].size() - 1;
        while(r != matrix.size() && c != -1){
            if(matrix[r][c]==target){
                return true;
            }else if(matrix[r][c]>target){
                --c;
            }else{
                ++r;
            }
        }
        return false;
    }
};

Tips

CPU Cache
https://coolshell.cn/articles/3236.html

CPU cache的知识
https://coolshell.cn/articles/10249.html

Review

https://www.cnblogs.com/dushuxiang/p/10304622.html
Model Compression via Distillation and Quantization
量化蒸馏:https://zengdiqing.blog.csdn.net/article/details/115587200

基于策略梯度的网络压缩 N2N Learning
N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning

https://www.jianshu.com/p/71601f6e2db2
https://zhuanlan.zhihu.com/p/148029368
https://www.cnblogs.com/zhonghuasong/p/7861524.html

利用强化学习,对网络进行裁剪,从Layer Removal和Layer Shrinkage两个维度进行裁剪。 一个是对层判断是否进行裁剪,一个是判断一层中的参数的裁剪。

在这里插入图片描述

Share

公司组织了一场职业规划的training

作为初入职场不到一年的萌新来说,确实应该好好听听,主要是分为三个大的part,但是在此之前,要说一个很厉害的模型,就是职业规划的70-20-10模型,什么意思?数字就是你工作中需要占比的精力。

70% 就是通过工作中的经验和分配的任务去学习,基类业务技能,这个是占据绝大部分的时间的。

20% 就要在同事关系中,比如你的导师,你的实习生新员工,同事之间不管是同部门还是跨部门的合作和交流,这个时间少了很多,但是往往是大型项目的关键。

10% 就是业余时间自己的充电,学习和培训,这个占比比较少,但是是你多维度竞争和生活工作平衡的一个重点。

那么怎么去权衡这个70-20-10呢?

70% 你需要主动去寻求新的项目和任务,甚至不同的工作去结合,你需要更多机会去实现你在项目中的价值。还有就是多参加高等级的会议,听听比你厉害的人都是怎么管理项目和思考的,如果你需要在一个高等级的会议中给大佬去汇报,这个机会就好好好把握。

20% 的处理方法就是你需要有一个mentor,或者成为一个mentor,有时间和你的同时和伙伴们组织一些研讨会,当然,有一个开发的小伙伴就更好了,对于你的开发和成长计划,有机会和自己的manager去聊一聊,沟通一下,有好处。

10% 的话,就是参加一些培训,多读书,技术的,非技术的,都能让你更加充实和丰富。

Part 1
Past-Present-Future

首先过去一年中你在自己的工作中有什么成长。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值