Langchain搭建LLM应用程序之四 记忆组件

Langchain 提供的记忆组件,用于维护应用程序的状态,允许用户根据最新的输入和输出更新应用状态,并支持使用已存储的状态调整输入内容。
在这里插入图片描述

代码实现
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, HumanMessagePromptTemplate

from langchain.chains import ConversationChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory

prompt = ChatPromptTemplate.from_messages([
    SystemMessagePromptTemplate.from_template(
        """
以下是一个人类和AI的友好对话,AI是一个健谈并且可以根据上下文提供特定详细信息的助手,如果AI不知道问题的答案,就回答【不知道】
"""
    ),
    MessagesPlaceholder(variable_name="history"),
    HumanMessagePromptTemplate.from_template("{input}")
])
memory = ConversationBufferMemory(return_messages=True)

conversation = ConversationChain(memory=memory, prompt=prompt, llm=client)
conversation.predict(input="你好,我叫李雷,我是一名Python程序员。")
conversation.predict(input="我喜欢coding和玩游戏,请给我推荐一些好玩的游戏。")
# ---
conversation.predict(input="我是一名新员工,请给我输出一个不超过300字的自我介绍,要求内容包含我最近发现的新游戏名称。")

在这里插入图片描述

【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)内容概要:本文围绕使用MATLAB和XBee技术实现温度传感器无线网络的连续监控展开研究,介绍了如何构建无线传感网络系统,并利用MATLAB进行数据采集、处理与可视化分析。系统通过XBee模块实现传感器节点间的无线通信,实时传输温度数据至主机,MATLAB负责接收并处理数据,实现对环境温度的动态监测。文中详细阐述了硬件连接、通信协议配置、数据解析及软件编程实现过程,并提供了完整的MATLAB代码示例,便于读者复现和应用。该方案具有良好的扩展性和实用性,适用于远程环境监测场景。; 适合人群:具备一定MATLAB编程基础和无线通信基础知识的高校学生、科研人员及工程技术人员,尤其适合从事物联网、传感器网络相关项目开发的初学者与中级开发者。; 使用场景及目标:①实现基于XBee的无线温度传感网络搭建;②掌握MATLAB与无线模块的数据通信方法;③完成实时数据采集、处理与可视化;④为环境监测、工业测控等实际应用场景提供技术参考。; 阅读建议:建议读者结合文中提供的MATLAB代码与硬件连接图进行实践操作,先从简单的点对点通信入手,逐步扩展到多节点网络,同时可进一步探索数据滤波、异常检测、远程报警等功能的集成。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值