Langchain 提供的记忆组件,用于维护应用程序的状态,允许用户根据最新的输入和输出更新应用状态,并支持使用已存储的状态调整输入内容。
代码实现
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import ConversationChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template(
"""
以下是一个人类和AI的友好对话,AI是一个健谈并且可以根据上下文提供特定详细信息的助手,如果AI不知道问题的答案,就回答【不知道】
"""
),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template("{input}")
])
memory = ConversationBufferMemory(return_messages=True)
conversation = ConversationChain(memory=memory, prompt=prompt, llm=client)
conversation.predict(input="你好,我叫李雷,我是一名Python程序员。")
conversation.predict(input="我喜欢coding和玩游戏,请给我推荐一些好玩的游戏。")
# ---
conversation.predict(input="我是一名新员工,请给我输出一个不超过300字的自我介绍,要求内容包含我最近发现的新游戏名称。")


867

被折叠的 条评论
为什么被折叠?



