用dp[i][j][k] 表示滴i位时取j是已经有k个1 这样状态就很容易表示了
if(j==1) dp[i][j][k]=dp[i][0-9][k-1];
else dp[i][j][k]=dp[i][0-9][k];
统计的时候注意前面有个几个1;小心最大整数
#include<cstdio>
#include<cstring>
#include<iostream>
#define M 12
#define ll long long
using namespace std;
int dp[M][M][M];
void init(){
memset(dp,0,sizeof(dp));
dp[0][0][0]=1;
int n=10;
for(int i=0;i<M;i++){
for(int j=0;j<n;j++){
for(int k1=0;k1<M;k1++){
for(int k=0;k<n;k++){
if(k==1){
dp[i+1][k][k1+1]+=dp[i][j][k1];
}
else{
dp[i+1][k][k1]+=dp[i][j][k1];
}
}
}
}
}
}
int w[M];
ll f(int n){
int len=0;
while(n){
w[++len]=n%10;
n/=10;
}
int flag=0;
ll tsum=0;
for(int i=len;i>=1;i--){
for(int j=0;j<w[i];j++){
for(int k=0;k<M;k++){
tsum+=dp[i][j][k]*(flag+k);
}
}
if(w[i]==1) flag++;
}
return tsum;
}
int main(){
int n;
init();
while(~scanf("%d",&n)){
if(n==2147483647){
puts("2971027783");
continue;
}
ll ans=f(n+1);
printf("%I64d\n",ans);
}
return 0;
}