2013 多校第七场 hdu 4670 Cube number on a tree(树上点的分治)

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4670

题目大意:给你一棵有n个顶点的树,每个节点有一个权值,给你k个prime,每个权值都可以由这k个prime的幂次方的和组成,问你在树上有多少条路径,使这条路径上的点的权值积是一个立方数。

思路:一个数是立方数,当且只当它的拆分成的所有质因子都是幂都是3的倍数,而质因子的4、7次幂和1次幂一样,5次、8次和2次一样,则对于幂次的个数,我们都对3取余,结果不变。每次选取这棵树的重心,然后算出所有经过这个点的路径数(暴搜),最后全部加起来即可。一个儿子,一个儿子搜过来,如果当前这个儿子这条路径的各因数幂次都知道了,那么我们只要加上之前有的它的互补的幂次的个数就好。互补就是说,加起来都是3的倍数,也就是全是0,比如:当前路径为0 1 2,那么只要看看 0 2 1这条路径之前出现的个数,加起来就行了。还有,这里的互补不能用 2 2 2 的满状态去剪应该是 3 3 3 的,比如:1 1 1,那么一剪还是1 1 1,其实是2 2 2。这里还有一个地方特别需要注意:k最大为30,可以用lld存下来表示状态,但是用数组哈希显然是不行的,用map,清零和哈希都很方便。

其实挺简单的说,功力太差,有个地方一直搞来搞去,搜的那条路径不包括根节点,然后更新 hash 的时候要加上根节点,初始化就是只包含根节点的状态为1。调了一个下午,挫了。。= =

搓代码一份,如下:

#pragma comment(linker, "/STACK:10240000000000,10240000000000")
#include<cstdio>
#include<cstring>
#include<map>
#include<vector>
#include<algorithm>
using namespace std;

typedef __int64 lld;

const int MAXN = 55555 ;

int n,k;

struct Edge
{
    int next,t;
} edge[MAXN<<1];

int tot ,head[MAXN];

void add_edge(int s,int t)
{
    edge[tot].t = t;
    edge[tot].next = head[s];
    head[s] = tot++;
}

struct Node
{
    int cnt[33];
} node[MAXN];

int num[MAXN],maxv[MAXN];

int vis[MAXN];

void get_size(int u,int fa)
{
    num[u] = 1;
    maxv[u] = 0;
    for(int e = head[u];e!=-1;e = edge[e].next)
    {
        int v = edge[e].t;
        if(vis[v]||v==fa) continue;
        get_size(v,u);
        num[u] += num[v];
        maxv[u] = max(maxv[u],num[v]);
    }
}

int minn ;

void find_root(int u,int fa,int &root,int sum)
{
    int tmp = max(sum - num[u],maxv[u]);
    if(tmp < minn )
    {
        minn = tmp;
        root = u;
    }
    for(int e = head[u];e!=-1;e=edge[e].next)
    {
        int v = edge[e].t;
        if(vis[v]||fa==v) continue;
        find_root(v,u,root,sum);
    }
}

int get_root(int u)
{
    get_size(u,-1);
    int sum = num[u];
    minn = n;
    int root = u;
    find_root(u,-1,root,sum);
    return root;
}

lld exp[33];

void init()
{
    exp[0] = 1;
    for(int i = 1;i<=30;i++)
        exp[i] = exp[i-1] * 3;
}

map <lld,int> sta;

int ss[33];

int ret;

vector <lld> vec;

void dfs(int u,int fa,int root)
{
    for(int i = 0;i<k;i++)
        ss[i] = (ss[i] + node[u].cnt[i])%3;
    lld cc = 0,cc2 = 0;
    for(int i = 0;i<k;i++)
    {
        cc += (3 - ss[i])%3*exp[i];
        cc2 += (ss[i]+node[root].cnt[i])%3*exp[i];
    }
    vec.push_back(cc2);
    ret += sta[cc];
    for(int e = head[u];e!=-1;e = edge[e].next)
    {
        int v = edge[e].t;
        if(vis[v]||v==fa) continue;
        dfs(v,u,root);
        for(int i = 0;i<k;i++)
            ss[i] = (ss[i] - node[v].cnt[i] + 3)%3;
    }
}

int count(int u)
{
    ret = 0 ;
    sta.clear();
    lld cc = 0;
    for(int i = 0;i<k;i++)
    {
        cc += node[u].cnt[i]*exp[i];
    }
    sta[cc] = 1;
    if(cc == 0) ret = 1;
    for(int e = head[u] ; e!=-1;e = edge[e].next)
    {
        int v = edge[e].t;
        if(vis[v]) continue;
        memset(ss,0,sizeof(ss));
        vec.clear();
        dfs(v,u,u);
        for(int i = 0;i<vec.size();i++)
            sta[vec[i]] ++ ;
    }
    //printf("ret = %d\n",ret);
    return ret;
}

int ans ;

void solve(int u)
{
    int root = get_root(u);
    //printf("root = %d\n",root);
    vis[root] = 1;
    ans += count(root);
    for(int e = head[root] ; e!=-1 ;e = edge[e].next)
    {
        int v = edge[e].t;
        if(vis[v]) continue;
        solve(v);
    }
}

lld pri[33];

int main()
{
    init();
    while(~scanf("%d",&n))
    {
        scanf("%d",&k);
        for(int i = 0;i<k;i++)
            scanf("%I64d",&pri[i]);

        for(int i = 0;i<n;i++)
        {
            lld tmp;
            scanf("%I64d",&tmp);
            memset(node[i].cnt,0,sizeof(node[i].cnt));
            for(int j = 0;j<k;j++)
            {
                while(tmp&&(tmp%pri[j]==0))
                {
                    node[i].cnt[j] ++;
                    node[i].cnt[j] = node[i].cnt[j]%3;
                    tmp = tmp/pri[j];
                }
                if( tmp == 0 )
                    break;
            }
        }

        tot=0;
        memset(head,-1,sizeof(head));
        int a,b;
        for(int i = 1;i<n;i++)
        {
            scanf("%d%d",&a,&b);
            a--;
            b--;
            add_edge(a,b);
            add_edge(b,a);
        }

        memset(vis,0,sizeof(vis));
        ans = 0;
        solve(0);
        printf("%d\n",ans);
    }
    return 0;
}

/*
6
2 2 3
36 36 36 36 36 36
1 2
2 3
3 4
4 5
5 6
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值