hdu 4734 F(x)(数位DP)

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4734

题目大意:给你两个数 a、b,F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,A是a十进制各个数位上的数字,让你求出 0 ~ b 中f(x) 比f(a)小的数字个数。

思路:数位DP。。 d[ i ][ j ]表示没满的的时候前 i 位f(x)<=j的个数,d[ i ][ j ] = SIGMA(d[ i - 1][ j - num[ i ]*c[ i ] ])。

挺水的数位DP啊,比赛的时候用for做的,因为我们不是预处理的那种,每次都算一遍,T很多,然后一直TLE,无语啊、。。T^T   TLE原因如下:由于都是不满的,所以memset要放外面!

或者直接for,先预处理,不过要多一维表示该位上的数字是多少,即 d[ i ][ j ][ s ] 表示 前 i 位第 i 位上的数字是 j,<= s 的个数,具体代码看这里吧:http://blog.csdn.net/suvigo/article/details/11689709

记忆化代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int a,b;

int c[11];

int d[11][10000];

char str[11];

int len;

int sum[11],ten[11];

int dfs(int pos,int s,int full)
{
    //printf("pos = %d,s = %d,full = %d\n",pos,s,full);
    if(pos == -1)
    {
        if(s >= 0) return 1;
        else return 0;
    }
    if(s < 0) return 0;
    if(!full && d[pos][s] != -1) return d[pos][s];
    int end = full ? str[len - pos - 1] - '0' : 9;
    int ans = 0;
    for(int i = 0;i<=end;i++)
    {
        ans += dfs(pos - 1,s - i*c[pos],full&&(i==end));
    }
    if(!full)
        return d[pos][s] = ans;
    else return ans;
}

int main()
{
    for(int i = 0;i<11;i++)
        c[i] = 1<<i;
    int T;
    scanf("%d",&T);
    memset(d,-1,sizeof(d));//放外面!!!
    for(int cas = 1;cas<=T;cas++)
    {
        scanf("%s",str);
        a = 0;
        int tmp = strlen(str);
        for(int i = tmp -1;i>=0;i--)
        {
            a += (str[i] - '0')*c[tmp - 1- i];
        }
        scanf("%s",str);
        
        len = strlen(str);
        int ans = dfs(len - 1,a,1);
        printf("Case #%d: %d\n",cas,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值