题目大意:给你n条横的块,每条块的长度是k,然后给你n个的左起点,如果两者有重叠,那么就可互相跳过去,临界条件也是可以跳的,问你点数最多的环,然后输出这个点数。
思路:这题有一个很巧妙的做法,先把坐标排序,然后就是往后找,假设当前 i 已经加入了前面的圈子,那么现在要判断 i+1 能不能加进去,它能加进去的条件是 x[ i + 1] - x[ i - 1 ] <= k && x[ i + 1 ] - x[ i ] <= k,如果不能,那么这个点就是割点了,然后比较大小就好了。
其实这种题目更一般的做法(包括我自己的想法,那不是图论里的事情么。。)是建边,然后找点连通分量,再判断。。
代码如下:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<stack>
#include<algorithm>
using namespace std;
const int MAXN = 5555;
int x[MAXN];
int main()
{
int _;
scanf("%d",&_);
while(_--)
{
int n,k;
scanf("%d%d",&n,&k);
for(int i = 1;i<=n;i++)
scanf("%d",&x[i]);
sort(x+1,x+1+n);
int i = 1;
int ans = 0;
while(i<=n)
{
int pre = i;
int cnt = 1;
while(i < n && (cnt == 1 || x[i+1] - x[i - 1] <= k) && x[i+1] - x[i] <=k)
i++,cnt++;
if(pre == i) i++;
//printf("pre = %d,i = %d\n",pre,i);
ans = max(ans,cnt);
}
printf("%d\n",ans);
}
return 0;
}