题目大意:每个数字可以分别由几根火柴棒拼起来,给你火柴棒的总数 n ,和 m ,问你用n个火柴棒去拼出来的最大的能被m整除的数是多少?
思路:很裸的数位DP,只是其中有个大数处理,这也是比较麻烦的地方。。。= = 设 d[ i ][ j ] 表示用 i 根火柴棒去拼,当前已有的余数为 j 的最大整数,则d[ i ][ j ] = max( d[ i - size[ num ] ][ ( j*10 + num)%m ] ),num 为 数字0~9,size 为 该 num 所需的火柴棒数。由于是大数,再开以为表示数字,然后再标记一下长度,也可以搞个结构体清楚一点。
这道题是自己敲得,因为感觉思路比较明确,由于只用到了*10+num的运算和比较,就直接手敲大数了,不过WA了好几发,原因是我 tmp 先开始是全局变量,在递归树里,它会在其他节点里发生变化,开在节点里就过了。。
代码如下;
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int size[]={6,2,5,5,4,5,6,3,7,6};
int m;
char d[101][3003][51];
int len[101][3003];
bool vis[101][3003];
void dfs(int n,int k,int level)
{
//printf("n = %d,k = %d\n",n,k);
if(vis[n][k]) return ;
vis[n][k] = 1;
int tmp[55];
int tmp_len = -1;
if(level > 0 && k == 0)
{
tmp_len = 0;
}
for(int i = 0;i<=9;i++)
{
int to_n = n - size[i];
int to_k = (k*10 + i)%m;
if(to_n < 0) continue;
//printf("i = %d,sz = %d\n",i,size[i]);
dfs(to_n,to_k,level + 1);
if(len[to_n][to_k] == -1) continue;
if(tmp_len == -1 || len[to_n][to_k] + 1 > tmp_len)
{
tmp_len = len[to_n][to_k] + 1;
tmp[tmp_len-1] = i;
for(int j = 0;j<len[to_n][to_k];j++)
tmp[j] = d[to_n][to_k][j];
}
else if(len[to_n][to_k] + 1 == tmp_len)
{
int ok = 0;
if(tmp[tmp_len-1] < i) ok = 1;
for(int j = len[to_n][to_k] - 1;!ok && j>=0;j--)
{
if(d[to_n][to_k][j] > tmp[j])
{
ok = 1;
break;
}
}
if(ok)
{
tmp[tmp_len - 1] = i;
for(int j = tmp_len-2;j>=0;j--)
tmp[j] = d[to_n][to_k][j];
}
}
/*printf("n = %d,k = %d,i = %d,tmp_len = %d,to_n = %d,to_k = %d\n",n,k,i,tmp_len,to_n,to_k);
for(int j = tmp_len-1;j>=0;j--)
printf("%d",tmp[j]);
puts("");*/
}
len[n][k] = tmp_len;
if(tmp_len != -1)
for(int i = 0;i<tmp_len;i++)
d[n][k][i] = tmp[i];
/*if(len[n][k]!=-1)
{
printf("******** n = %d,k = %d,tmp_len = %d\n",n,k,tmp_len);
for(int i = len[n][k]-1;i>=0;i--)
printf("%d",d[n][k][i]);
puts("");
}*/
}
int main()
{
int cas = 0;
int n;
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
memset(vis,0,sizeof(vis));
dfs(n,0,0);
printf("Case %d: ",++cas);
if(len[n][0] == -1)
puts("-1");
else
{
int pos = len[n][0]-1;
while(d[n][0][pos] == 0 && pos > 0) pos --;
for(int i = pos;i>=0;i--)
printf("%d",d[n][0][i]);
puts("");
}
}
return 0;
}