poj 2541 (kmp 或 状压dp)

题目:http://poj.org/problem?id=2541
题目大意:给你一个长度为n的01组成的字符串,0表示下雨,1表示晴,现在要预测n+1天的天气,找到一个长度最大且最靠后的一个
位置,它的前缀等于整个字符串的后缀,且长度要 <= 13,如果没有符合的,那么这一天就是0,再接着预测下一天,现在让你输出后面
l天的天气。
思路:倒着进行KMP,如果纯粹是这样,肯定爆掉,这里还有一个剪枝,那就是如果当前max_len == 13 了,那么就没必要再往后求
fail 了,就直接break掉。倒是我感觉如果是最差的极端数据,也可能会爆掉,poj嘛,可能是数据比较水吧。。
其实我自己先开始的想法是找循环,就没有考虑时间问题,因为很快就能进入循环,WA了几遍,后来发现找循环本身就是错的,题目没有理解
的问题吧。。。 = =
另外一种解法是状态压缩DP(佩服,反正我是没想到。。),设d[ i ][ j ]表示长度为 i 值为 j 的字符串的最右出现的最后一个字符的
位置(因为对于同一个值,有可能出现不同的字符串,0的存在,所以二维),那么就只需要一遍更新过去就行了,先判断,再更新。
复杂度为O(13 * (n + l))。我感觉这个才是正解。。。

DP版代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int MAXN = 1111111;

int d[14][1<<14];

char str[MAXN];

int main()
{
    int n,l;
    while(~scanf("%d%d",&n,&l))
    {
        scanf("%s",str+1);
        memset(d,-1,sizeof(d));
        for(int i = 1;i<=n+l;i++)
        {
            if(i >= n)
            {
                int pos = -1;
                int tmp = 0;
                for(int j = 1;j<=13;j++)
                {
                    if(i - j + 1 <= 0) break;
                    tmp = (tmp<<1) + str[i - j + 1] - '0';
                    if(d[j][tmp] != -1)
                    {
                        pos = d[j][tmp];
                    }
                }
                if(pos != -1)
                {
                    str[i+1] = str[pos+1];
                }
                else str[i+1] = '0';
                //printf("i = %d,pos = %d\n",i,pos);
            }
            int tmp = 0;
            for(int j = 1;j<=13;j++)
            {
                if(i - j + 1 <= 0) break;
                tmp = (tmp << 1) + str[i - j + 1] - '0';
                d[j][tmp] = i;
            }
        }
        for(int i = 1;i<=l;i++)
            printf("%c",str[n+i]);
        puts("");
    }
    return 0;
}

/*

10 7
1101110010

5 5
00001

*/


KMP版代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int MAXN = 1111111;

int n;

char str[MAXN];
int fail[MAXN];

void get_fail()
{
    int max_len = 0;
    int pos;
    fail[n-1] = n;
    int j = n;
    for(int i = n-2 ;i>=0;i--)
    {
        while(j < n && str[i] != str[j-1]) j = fail[j];
        if(str[i] == str[j-1]) j--;
        fail[i] = j;

        int len = n - 1 - fail[i] + 1;
        if(len <= 13 && len > max_len)
        {
            max_len = len;
            pos = i;
            if(max_len == 13) break;
        }
    }
    //printf("max_len = %d,pos = %d\n",max_len,pos);
    if(max_len) str[n] = str[pos + max_len];
    else str[n] = '0';
}

int main()
{
    int l;
    while(~scanf("%d%d",&n,&l))
    {
        scanf("%s",str);
        for(int i = 0;i<l;i++,n++)
        {
            get_fail();
        }
        for(int i = 0;i<l;i++)
            printf("%c",str[n-l+i]);
        puts("");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值