陶夭夭

桃之夭夭,灼灼其华。

整数的划分问题

整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时

               基本都将涉及。

整数划分,是指把一个正整数n写成如下形式:

               n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n){m1,m2,...,mi}    

               为 n的一个划分。

               如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m它 

               属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);

例如当n=4时,它有5个划分:{4},{3,1},{2,2},{2,1,1},{1,1,1,1};

               注意4=1+3 和 4=3+1被认为是同一个划分。

 该问题是求出n的所有划分个数,即f(n, n)。下面考虑求f(n,m)的方法;

根据n和m的关系,考虑以下几种情况:

       (1)当n=1时,不论m的值为多少(m>0),只有一种划分即{1};

       (2)当m=1时,不论n的值为多少,只有一种划分即{n};

       (3)当n=m时,根据划分中是否包含n,可以分为两种情况:

                 (a). 划分中包含n的情况,只有一个即{n};

                 (b). 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n所有

                       (n-1)划分。

         因此 f(n,n) =1 + f(n,n-1);

        (4) 当n<m时,由于划分中不可能出现负数,因此就相当于f(n,n);

        (5) 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:

               (a). 划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,... xi} 的和为n-                m,可能再次出现m,因此是(n-m)的m划分,

                因此这种划分个数为f(n-m, m);

               (b). 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分个数

                为f(n,m-1);

        因此 f(n, m) = f(n-m, m)+f(n,m-1);

 综合以上情况,我们可以看出,上面的结论具有递归定义特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,将会转换为情况(5)。而情况(5)为通用情况,属于递推的方法,其本质主要是通过减小m以达到回归条件,从而解决问题。其递推表达式如下:

         f(n, m)=      1;                                (n=1 ||m=1)

                            f(n, n);                         (n<m)

                            1+ f(n, m-1);                (n=m)

                            f(n-m,m)+f(n,m-1);      (n>m)

整数的划分(nyoj)

代码:

#include<stdio.h> 

int f(int k,int s) 

if(k==1||s==1)

return 1; 

if(k==s)

return 1+f(k,s-1); 

if(k<s)

return f(k,k); 

if(k>s)

return f(k-s,s)+f(k,s-1); 

int main() 

      int n,m,t; 

      scanf("%d",&n); 

      while(n--) 

      { 

             scanf("%d",&m); 

              t=f(m,m); 

              printf("%d\n",t); 

      } 

      return 0;

整数划分(二)(nyoj   176) 

这个也可以用数组保存起来,来节省时间。

#include<stdio.h> 

int f(int k,int s) 

if(k==1||s==1||k==0)return 1; 

if(k==s)return 1+f(k,s-1); 

if(k<s)return f(k,k); 

if(k>s)return f(k-s,s)+f(k,s-1); 

int main() 

        int n,m,p,t; 

        scanf("%d",&n); 

        while(n--) 

        { 

                    scanf("%d%d",&m,&p); 

                     t=f(m-p,p);

                     printf("%d\n",t); 

         } 

         return 0; 

}  

或者:   

#include<stdio.h>
int g(int m,int n)
{
    if(m<n)
    return 0;
    if(m==1||n==1||m==n)
    return 1;
    if(m>n)
    return g(m-1,n-1)+g(m-n,n);
}
int main()
{
    int t,m,n,s;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&m,&n);
        printf("%d\n",g(m,n));
    }
}

这个方法和上一个很类似,只不过在m>n时return  g(m-1,n-1)+g(m-n,n);

 

      

阅读更多
个人分类: 算法
博主设置当前文章不允许评论。

没有更多推荐了,返回首页

不良信息举报

整数的划分问题

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭