最长公共子序列

一、题目

Given two strings, find the longest common subsequence (LCS).

Your code should return the length of LCS.

Have you met this question in a real interview?

Yes

Example

For "ABCD" and "EDCA", the LCS is "A" (or "D", "C"), return 1.

For "ABCD" and "EACB", the LCS is "AC", return 2.

**Notice that the subsequence may be discontinuous in these original sequences.

二、解题思路

求『最长』类的题目往往与动态规划有点关系,这里是两个字符串,故应为双序列动态规划。比较基础的题。

f[i][j]表示字符串 A 的前 i 位和字符串 B 的前 j 位的最长公共子序列数目。

  • A[i] == B[j], 则分别去掉这两个字符后,原 LCS 数目减一。所以在A[i] == B[j]时 LCS 最多只能增加1。即:f[i][j] = f[i-1][j-1]+1。
  • 而在A[i] != B[j]时,由于A[i] 或者 B[j] 不可能同时出现在最终的 LCS 中,故这个问题可进一步缩小,f[i][j] = max(f[i - 1][j], f[i][j - 1])

三、解题代码

public class Solution {
    /**
     * @param A, B: Two strings.
     * @return: The length of longest common subsequence of A and B.
     */
    public int longestCommonSubsequence(String A, String B) {
        if (A == null || A.length() == 0) return 0;
        if (B == null || B.length() == 0) return 0;

        int lenA = A.length();
        int lenB = B.length();
        int[][] lcs = new int[1 + lenA][1 + lenB];

        for (int i = 1; i < 1 + lenA; i++) {
            for (int j = 1; j < 1 + lenB; j++) {
                if (A.charAt(i - 1) == B.charAt(j - 1)) {
                    lcs[i][j] = 1 + lcs[i - 1][j - 1];
                } else {
                    lcs[i][j] = Math.max(lcs[i - 1][j], lcs[i][j - 1]);
                }
            }
        }

        return lcs[lenA][lenB];
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值