最近复习数据结构中的二叉树的相关问题,在这里整理一下
这里包括:
1、二叉树的先序创建
2、二叉树的递归先序遍历
3、二叉树的非递归先序遍历
4、二叉树的递归中序遍历
5、二叉树的非递归中序遍历
6、二叉树的递归后序遍历
7、二叉树的非递归后序遍历
8、二叉树的层次遍历
这里感谢博客http://blog.csdn.net/skylinesky/article/details/6611442的指导
/**二叉树的结点定义*/
class Node<T>{
private T value;
private Node<T> left;
private Node<T> right;
public Node(){
}
public Node(Node<T> left, Node<T> right, T value){
this.left = left;
this.right = right;
this.value = value;
}
public Node(T value){
this(null, null, value);
}
public Node<T> getLeft(){
return this.left;
}
public void setLeft(Node<T> left){
this.left = left;
}
public Node<T> getRight(){
return this.right;
}
public void setRight(Node<T> right){
this.right = right;
}
public T getValue(){
return this.value;
}
public void setValue(T value){
this.value = value;
}
}
import java.io.File;
import java.io.FileNotFoundException;
import java.util.LinkedList;
import java.util.Scanner;
/**
* 二叉树的定义:或为空,或只有根节点,或有左子树和右子树(5种基本形态)
* 二叉树性质:
* 1、在二叉树的第i层上至多有2^(i-1)个结点(i>=1)
* 2、深度为k的二叉树至多有2^(k) - 1个结点(k>=1)
* 3、对于任何一颗二叉树,如果其终端结点数为n,度数为2的结点数为m,则n = m + 1
* 4、具有n个结点的完全二叉树的深度为k = floor(log2(n)) + 1
* 5、在含有n个结点的二叉链表中有n+1个空链域
*
* @author 小菜鸟
*创建时间:2014-08-10
*/
public class BinaryTree<T> {
/**二叉树的根节点*/
private Node<T> root;
public BinaryTree(){}
public BinaryTree(Node<T> root){
this.root = root;
}
/**先序遍历创建二叉树*/
/**input.txt: - + a # # * # # / e # # f # #
* # 代表空结点
*/
public void createBiTree(){
Scanner scn = null;
try {
scn = new Scanner(new File("input.txt"));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
this.root = createBiTree(root, scn);
}
private Node<T> createBiTree(Node<T> node, Scanner scn) {
String temp = scn.next();
if(temp.trim().equals("#")){
return null;
}
else{
node = new Node<T>((T)temp);
node.setLeft(createBiTree(node.getLeft(), scn));
node.setRight(createBiTree(node.getRight(), scn));
return node;
}
}
/**先序递归遍历二叉树*/
public void preOrderTraverse(){
preOrderTraverse(root);
}
private void preOrderTraverse(Node<T> node) {
if(node != null){
System.out.println(node.getValue());
preOrderTraverse(node.getLeft());
preOrderTraverse(node.getRight());
}
}
/**先序非递归遍历二叉树*/
public void nrPreOrderTraverse(){
Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;
while(node != null || !stack.isEmpty()){
while(node != null){
System.out.println(node.getValue());
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
node = node.getRight();
}
}
/**中序递归遍历二叉树*/
public void inOrderTraverse(){
inOrderTraverse(root);
}
private void inOrderTraverse(Node<T> node) {
if(node != null){
inOrderTraverse(node.getLeft());
System.out.println(node.getValue());
inOrderTraverse(node.getRight());
}
}
/**中序非递归遍历二叉树*/
public void nrInOrderTraverse(){
Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;
while(node != null || !stack.isEmpty()){
while(node != null){
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
System.out.println(node.getValue());
node = node.getRight();
}
}
/**后序递归遍历二叉树*/
public void postOrderTraverse(){
postOrderTraverse(root);
}
private void postOrderTraverse(Node<T> node) {
if(node != null){
postOrderTraverse(node.getLeft());
postOrderTraverse(node.getRight());
System.out.println(node.getValue());
}
}
/**后序非递归遍历二叉树*/
public void nrPostOrderTraverse(){
Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;
Node<T> preNode = null; //记录之前遍历的右结点
while(node != null || !stack.isEmpty()){
while(node != null){
stack.push(node);
node = node.getLeft();
}
node = stack.getTop();
/**如果右结点为空,或者右结点之前遍历过,打印根结点*/
if(node.getRight() == null || node.getRight() == preNode){
System.out.println(node.getValue());
node = stack.pop();
preNode = node;
node = null;
}
else{
node = node.getRight();
}
}
}
/**层次遍历二叉树*/
public void levelTraverse(){
levelTraverse(root);
}
private void levelTraverse(Node<T> node) {
Queue<Node<T>> queue = new Queue<Node<T>>();
queue.push(node);
while(!queue.isEmpty()){
node = queue.pop();
if(node != null){
System.out.println(node.getValue());
queue.push(node.getLeft());
queue.push(node.getRight());
}
}
}
public static void main(String[] args){
BinaryTree<String> bt = new BinaryTree<String>();
bt.createBiTree();
//bt.preOrderTraverse();
//bt.inOrderTraverse();
//bt.postOrderTraverse();
//bt.nrPreOrderTraverse();
//bt.nrInOrderTraverse();
//bt.nrPostOrderTraverse();
bt.levelTraverse();
}
}
【注:其中关于栈和队列的定义请参考另一篇博文】
Java实现栈和队列的定义:http://blog.csdn.net/junwei_yu/article/details/38470825