缓存设计与 LRU

缓存的数据结构采用哈希表,key到value的映射。

网上有些资料采用记录数据的使用时刻 实现LRU策略,此处采用双向链表 实现LRU策略。LRU Least Recently Used,MRU Most Recently Used

双向链表,lruPtr头指向最近最少使用的元素,mruPtr头指向最近最多使用的元素。

LRUCache<int, int> tc(3);  //最大三个元素
tc.insert(1, 101);
tc.insert(2, 102);
tc.insert(3, 103);

最终存储结构如下图:

哈希表中的元素:

  • 黄色是 key域,哈希的键
  • 蓝色是value域,存储的数据值
  • 红色是newerPtr 域,指向下一个更新的 哈希项
  • 绿色是oldPtr域,指向前一个更旧的 哈希项
LRUCache缓存中 保存mruPtr和lruPtr,缓存的查找、更新元素 首先从hash_table中发起,然后同步更新到双向链表中。


===========================================

要求:
设计并实现一个LRU缓存的数据结构,支持get和set操作

get(key):若缓存中存在key,返回对应的value,否则返回-1

set(key,value):若缓存中存在key,替换其value,否则插入key及其value,如果插入时缓存已经满了,应该使用LRU算法把最近最久没有使用的key踢出缓存。

设计1:

cache使用数组,每个key再关联一个时间戳,时间戳可以直接用个long long类型表示,在cache中维护一个最大的时间戳:

  • get的时候把key的时间戳变为最大时间戳+1
  • set的时候,数据从前往后存储
    如果key存在,更新key的时间戳为当前cache中最大的时间戳+1,并更新value;
    如果key不存在,
                     若缓存满,在整个缓存中查找时间戳最小的key,其存储位置作为新key的存储位置,设置key的时间戳为最大时间戳+1
                     若缓存未满,设置key的时间戳为最大时间戳+1,存储位置为第一个空闲位置

分析下时间空间复杂度,get的时候,需要从前往后找key,时间为O(N),set的时候,也要从前往后找key,当缓存满的时候,还得找到时间戳最小的key,时间复杂度为O(N)。除了缓存本身,并没有使用其他空间,空间复杂度为O(1)。 这个速度显然是比较慢的,随着数据量的增大,get和set速度越来越慢。可能有人会想到用哈希表作为底层存储,这样get的时间复杂度确实可以减低为O(1),set的时候,只要缓存没有满,也可以在O(1)的时间完,但在缓存满的时候,依然需要每次遍历找时间戳最小的key,时间复杂度还是O(N)。

设计2:

cache底层使用单链表,同时用一个哈希表存储每个key对应的链表结点的前驱结点,并记录链表尾结点的key

  • get时,从哈希表中找到key对应的链表结点,挪到链表头,更新指向尾结点的key
  • set时,如果key存在,那么找到链表结点,并挪到链表头,更新指向尾结点的key
              如果key不存在,
                                  若缓存满,重用链表尾结点,设置新key和value,并挪到链表头,更新指向尾结点的key
                              若缓存未满,直接插入结点到链表头,若是第一结点,更新指向尾结点的key

get,set时间复杂度O(1),总的空间复杂度O(N)。比前面的设计好一点。下面的再来看下关于设计2的两个实现

实现1,自定义链表

为了方便链表的插入与删除,使用了带头结点head的链表,所以真正有效的第一个结点是head->next。另外,只是简单的实现,没有容错,不支持并发,简单的内存管理

ps. 用双向链表来实现会简单写,这里用单链表和哈希表共同实现了双向链表的功效,也就是哈希除了用来查找,还指示了key对应的结点的前驱结点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值