python实战--关于全国新冠肺炎病毒(2019-nCoV)精确到市的热力图绘制

本文章从https://blog.csdn.net/xufive/article/details/104093197上获取灵感并用自己的方式进行改进,提升精度并使用更直接的热力图方式进行可视化

python版本:3.7.5,另安装了pyecharts地图扩展包,安装教程详见百度,不再赘述

BME方向,非计算机专业,代码如有可优化之处请与我联系,联系方式在最下方

首先放出成果(数据为2020-02-04 10:28:21全国确诊人数):
在这里插入图片描述
这篇文章里只谈数据的采集和分析绘图,不表达对疫情的任何看法

首先,我们寻找一个合适的数据源:

就是你了,腾讯疫情实时追踪

然后,爬爬爬:

Firefox使用F12获取有用的json
在这里插入图片描述
观察url,我们根据前人的经验,不去理会后面的时间戳,从此爬虫模块轻易完成,代码如下:

import datetime
import json
import requests


def catch():
    url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
    data = json.loads(requests.get(url=url).json()['data'])
    distb = data['areaTree'][0]
    growth = data['chinaDayList']
    provinces = distb['children']
    cityTotalConfirm = {}
    cityTotalSuspect = {}
    cityTotalDead = {}
    cityTotalHeal = {}
    cityTodayConfirm = {}
    cityTodaySuspect = {}
    cityTodayDead = {}
    cityTodayHeal = {}

    for province in provinces:
        for city in province['children']:
            cityTotalConfirm.update({city['name']: city['total']['confirm']})
            cityTotalSuspect.update({city['name']: city['total']['suspect']})
            cityTotalDead.update({city['name']: city['total']['dead']})
            cityTotalHeal.update({city['name']: city['total']['heal']})
            cityTodayConfirm.update({city['name']: city['today']['confirm']})
            cityTodaySuspect.update({city['name']: city['today']['suspect']})
            cityTodayDead.update({city['name']: city['today']['dead']})
            cityTodayHeal.update({city['name']: city['today']['heal']})
    return cityTodayConfirm, \
           cityTodaySuspect, \
           cityTodayDead, \
           cityTodayHeal, \
           cityTotalConfirm, \
           cityTotalSuspect, \
           cityTotalDead, \
           cityTotalHeal

至此,获取了今日、总体上确诊、疑似、死亡、治愈共八个数据组,和前人不同的是,数据上我精确到了市级

然后数据处理、可视化(热力图绘制)

这里我为了方便使用了pyechart,毕竟人生苦短就不跟工具较劲了

import numpy as np
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType

def geo_heatmap(k, v) -> Geo:
    try:
        c = Geo()
        c.add_schema(maptype="china")
        c.add(
            "ratio",
            [list(z) for z in zip(k, v)],
            type_=ChartType.HEATMAP,
        )
    except TypeError:
        print("地址有误,开始排错......")
        with open("place.txt", mode="a") as f:
            i = 0
            c = Geo()
            c.add_schema(maptype="china")
            while i < len(k):
                try:
                    c.add(
                        "ratio",
                        [list(z) for z in zip(k[:i], v[:i])],
                        type_=ChartType.HEATMAP,
                    )
                except:
                    print(k[i - 1])
                    f.writelines(k[i - 1])
                    f.writelines('\n')
                    del k[i - 1]
                    del v[i - 1]
                    i -= 1
                    continue
                else:
                    i += 1
        geo_heatmap(k,v)
    else:
        c.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        timen = datetime.datetime.now().strftime('%Y-%m-%d')
        timea = datetime.datetime.now().strftime('%Y-%m-%d %H.%M.%S')
        c.set_global_opts(visualmap_opts=opts.VisualMapOpts(),
                          title_opts=opts.TitleOpts(title="2019nCoV{} BY PZW".format(timen))
                          )

        Geo.render(c, path='{}HEATMAP.html'.format(timea))
        print('渲染完毕')

其中爬到腾讯的地址有一些和pyecharts的地址映射并不对口,于是中间那个排错步骤诞生了,由于本人只是业余玩玩,也不知道有什么优化的方法,就这样吧。

在第一次排错以后会建立未成功地名的文件,在每一次渲染之前,都会读取未成功地名并作出排除以避免出错

以下是读取代码:

def Rep():
    lines = []
    with open("place.txt", mode='r', encoding='gbk') as ef:
        while True:
            line = ef.readline()
            if not line:
                break
            line = line.strip('\n')
            lines.append(line)
    return lines

然后就是主调用程序:

def main(raw=0):
    tdc, tds, tdd, tdh, ttc, tts, ttd, tth = catch()
    cities, numbers = list(ttc.keys()), list(tdc.values())
    k, v = [], []
    ep = Rep()
    for i in range(len(cities)):
        if cities[i] != '地区待确认' and cities[i] not in ep:
            k.append(cities[i])
            v.append(numbers[i])
        else:
            continue
    if raw == 0:
        v = np.array(v)
        v = np.log2(v+1)*10
        v = list(v)
    else:
        pass
    geo_heatmap(k, v)


if __name__ == '__main__':
    main()

其中我传给热力图的数据是ttc,即总确诊人数,可以根据不同的需要改变

在传入数据时,由于传染病学的指数模型的影响,各地感染人数间差异过大,为了让热力图拥有较为合适的对比度,我设置了raw==0的情况,即不适用原数据而对它进行对数化处理并加以权数10,当然,raw=1时采用原数据也行。

得到结果如下(2020-02-04 10.28.21):

2020-02-04 10.28.21HEATMAP
至此绘制完毕,过程中如有侵权请与我联系
Github源码已上传:
https://github.com/A-nnonymous/2019nCoV_HEATMAP

QQ:617428699

发布了6 篇原创文章 · 获赞 8 · 访问量 7439
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览