POJ1088(深搜+dp)

博客探讨了一道编程问题POJ1088,涉及在给定的n*m地图上寻找最长递减路径。路径必须严格递减,且只能上下左右移动。解决方案通过遍历每个节点并使用深度优先搜索配合动态规划dp矩阵,避免重复搜索,当dp[x][y]>0时,表示该节点已处理,直接返回其值。
摘要由CSDN通过智能技术生成

题意:给定一个n*m的地图,0到10000的数字,寻找到一条最长的路径,该路径严格递减,延伸方式只能上下左右。

思路:遍历每个点,然后进行深搜,因为路径可能会重复搜索,所以用dp来保存,当dp[x][y]>0时候,代表这个点不用延伸了,之前已经做过了,直接返回dp[x][y]就行了。

#include<stdio.h>
#include <string.h>
int a[105][105],dp[105][105];
int max(int a,int b)
{
	return a>b?a:b; 
}
int dfs(int x,int y,int p)
{
	if(a[x][y]==-1)//如果越界
	return 0;
	if(dp[x][y]>0)//如果该点之后的路径已经搜过了
	return dp[x][y];
	dp[x][y]=1;//代表该点之前没访问过,现在访问,一开始这句没加就WA了,没有这句该点有可能重复搜到。
	if(p>a[x+1][y])
	dp[x][y]=max(dp[x][y],dfs(x+1,y,a[x+1][y])+1);
	if(p>a[x][y+1])
	dp[x][y]=max(dp[x][y],dfs(x,y+1,a[x][y+1])+1);
	if(p>a[x-1][y])
	dp[x][y]=max(dp[x][y],dfs(x-1,y,a[x-1][y])+1);
	if(p>a[x][y-1])
	dp[x][y]=max(dp[x][y],dfs(x,y-1,a[x][y-1])+1);
	return dp[x][y];
}
int main()
{
	int r,c;
	in
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值