python+opencv分类器训练模型,运动物体识别检测,无人机识别(源码直接下载可用)

本文介绍了使用OpenCV训练分类器进行运动物体识别和无人机检测的步骤,包括收集样本、处理样本、生成描述文件、训练模型以及视频跟踪识别的效果。详细讲解了训练过程中的参数设置和中断处理。
摘要由CSDN通过智能技术生成

一、简介

使用opencv_traincascade 分类器的训练模型包括两个主要阶段:模型的训练阶段和检测阶段。本文档概述了训练自己的弱分类器的级联所需的功能。当前指南将逐步完成所有不同阶段:收集训练数据,准备训练数据并执行实际模型训练。

将使用几个官方的OpenCV应用程序:opencv_createsamples,opencv_annotation,opencv_traincascade和opencv_visualisation。

二、准备训练数据

训练需要一些样本。样本分两类:负样本和正样本。负样本是指不包括物体的图像。正样本是待检测的物体的图像。负样本必须手工准备,正样本可以使用 opencv_createsamples 创建

1、收集正样本

2、收集负样本

负样本可以是任意图像,但是这些图像中不能包含

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农小镰刀1024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值