一、简介
使用opencv_traincascade 分类器的训练模型包括两个主要阶段:模型的训练阶段和检测阶段。本文档概述了训练自己的弱分类器的级联所需的功能。当前指南将逐步完成所有不同阶段:收集训练数据,准备训练数据并执行实际模型训练。
将使用几个官方的OpenCV应用程序:opencv_createsamples,opencv_annotation,opencv_traincascade和opencv_visualisation。

二、准备训练数据
训练需要一些样本。样本分两类:负样本和正样本。负样本是指不包括物体的图像。正样本是待检测的物体的图像。负样本必须手工准备,正样本可以使用 opencv_createsamples 创建
1、收集正样本

2、收集负样本
负样本可以是任意图像,但是这些图像中不能包含
本文介绍了使用OpenCV训练分类器进行运动物体识别和无人机检测的步骤,包括收集样本、处理样本、生成描述文件、训练模型以及视频跟踪识别的效果。详细讲解了训练过程中的参数设置和中断处理。
订阅专栏 解锁全文
2万+

被折叠的 条评论
为什么被折叠?



