【102】KeyError: 'accuracy'、KeyError: 'val_acc'、KeyError: 'acc'报错

本文作者小婷儿分享了在Python编程中遇到KeyError,如'accuracy'、'val_acc'、'acc'的报错情况。文章介绍了这些错误的可能原因和解决方法,内容涉及数据分析、机器学习领域的数据处理。同时,作者提供了个人博客链接、联系方式和交流群信息,欢迎大家探讨技术问题。


♣题目部分报错信息之KeyError: 'accuracy'
报错信息之KeyError: 'val_acc'和KeyError: 'acc'
     




♣答案部分    首先,之所以会出现KeyError: ‘accuracy’、KeyError: ‘acc’、KeyError: 'val_acc’等报错信息,是由于keras库(一个开源人工神经网络库,用于构建和训练深度学习模型的高级 API)版本不同所造成的;
train_loss = history.history['accuracy']
valid_loss = history.history['val_accuracy'
    之所以会报错,是因为keras库老版本中的参数不是accuracy,而是acc,将参数accuracy替换为acc,修改过的代码如下:
train_loss = history.history['acc']
valid_loss = history.history['val_acc']

  


About Me:小婷儿

● 本文作者:小婷儿,专注于python、数据分析、数据挖掘、机器学习相关技术,也注重技术的运用

● 作者博客地址:https://blog.csdn.net/u010986753

● 本系列题目来源于作者的学习笔记,部分整理自网络,若有侵权或不当之处还请谅解

● 版权所有,欢迎分享本文,转载请保留出处

● 微信:tinghai87605025 联系我加微信群

● QQ:87605025

● QQ交流群py_data :483766429

●&n

<think> 我们正在解决在Python 3.9和TensorFlow 2.8.0环境下运行代码时出现的KeyError: 'val_accuracy'错误。 根据错误信息,可能是在代码中使用了'val_accuracy'这个键,但在训练历史记录中不存在。在TensorFlow 2.x中,验证准确率的键名可能发生了变化。 在TensorFlow 2.0及以上版本中,默认情况下,训练历史记录中的指标名称会随着模型的编译参数而变化。通常,准确率的键名可能是'accuracy',验证准确率的键名可能是'val_accuracy'。 但是,请注意,在模型编译时,如果指定了不同的名称,或者使用了自定义的指标,那么键名会有所不同。 错误原因分析: 1. 可能是在模型编译时没有指定验证集,导致没有验证指标,因此历史记录中没有'val_accuracy'。 2. 可能是TensorFlow版本差异导致键名略有不同(例如,在较早的2.x版本中,可能是'val_acc',但在2.0之后一般使用'val_accuracy')。 3. 在训练模型时,如果没有设置验证集,那么就不会有以'val_'开头的指标。 根据提供的引用[4],我们看到在评估模型时使用了`model.evaluate`,并打印出了准确率(accuracy),但没有提到验证准确率。因此,我们主要关注训练过程中验证指标的问题。 解决方案: 1. 检查训练代码中是否指定了验证集。在调用`model.fit`时,是否提供了`validation_data`或`validation_split`参数?如果没有,则不会计算验证指标,自然不会有'val_accuracy'。 2. 检查在模型编译时是否指定了监控准确率指标。通常,在分类任务中,我们会使用`metrics=['accuracy']`,这样训练过程中会记录训练准确率('accuracy')和验证准确率(如果有验证集,则为'val_accuracy')。 3. 如果确实有验证集,但仍然出现KeyError,那么可能是键名不同的原因。我们可以打印出历史记录对象中的所有键,以确认正确的键名。 具体步骤: 步骤1:确保在模型编译时设置了`metrics`参数,例如: model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) 步骤2:在调用fit方法时,确保设置了验证集,例如: history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val)) 或者使用validation_split: history = model.fit(X_train, y_train, epochs=10, validation_split=0.2) 步骤3:在训练结束后,可以通过以下方式查看历史记录中可用的键: print(history.history.keys()) 然后,根据打印出的键名来替换代码中使用的'val_accuracy'。可能的键名有(根据版本和配置): - 训练准确率:'accuracy' 或 'acc' - 验证准确率:'val_accuracy' 或 'val_acc' 在TensorFlow 2.8.0中,默认应使用'accuracy'和'val_accuracy'。但为了确保兼容性,建议使用上述打印的方式确认。 步骤4:如果代码中是在回调函数(如EarlyStopping)中使用了'val_accuracy',那么同样需要根据实际的键名进行修改。例如,如果打印出来的键是'val_acc',则应该使用'val_acc'。 另外,引用[3]提到一个关于导入的问题,但与本问题无关。引用[4]展示了评估模型的结果,没有直接关系。 如果上述步骤无法解决,请提供出现错误的代码片段,以便更准确地定位问题。 根据上述分析,我们可以给出以下解决方案: 示例代码: ```python # 模型编译 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 注意这里设置了accuracy # 模型训练,使用验证集 history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)) # 训练结束后,查看历史记录的键 print(history.history.keys()) # 假设我们要绘制验证准确率曲线,正确的键名应该是上面打印出来的其中一个 # 例如,如果打印出来的键为:dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) # 那么我们就可以使用'val_accuracy'。 ``` 如果打印出来的键中没有'val_accuracy',而是'val_acc',则需要将代码中所有出现'val_accuracy'的地方改为'val_acc'。 此外,在TensorFlow 2.0以上版本,通常使用'val_accuracy'。但是,如果用户使用的是旧版本的代码,可能会出现键名不一致。 另一种解决方法:在模型编译时指定指标别名(自定义指标名称),这样可以确保键名一致。例如: ```python model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name='my_acc')]) ``` 这样,训练准确率的键就是'my_acc',验证准确率的键就是'val_my_acc'。然后在回调函数或访问历史记录时使用'val_my_acc'。 总结:检查验证集设置、打印历史记录的键,并确保使用正确的键名。 如果用户没有提供代码,我们只能根据常见情况给出上述建议。 相关问题: 1. 如何设置TensorFlow/Keras模型训练时的验证集? 2. TensorFlow的不同版本中,训练历史记录的键名有哪些变化? 3. 如何在模型编译时自定义指标名称以避免键名冲突? 4. 如何在训练过程中监控验证集指标并用于早停(EarlyStopping)? </think> ### 解决 TensorFlow 2.8.0 中 KeyError: 'val_accuracy' 错误 #### 问题原因分析 该错误通常发生在尝试访问模型训练历史记录中的 `val_accuracy` 键时,常见原因包括: 1. **验证集未正确配置**:训练时未设置验证集,导致历史记录中不存在验证指标 2. **TensorFlow 版本的命名差异**:某些版本使用 `val_acc` 而非 `val_accuracy` 3. **回调函数配置错误**:如 `ModelCheckpoint` 或 `EarlyStopping` 使用了错误的关键字 4. **模型未编译准确率指标**:编译时未包含 `metrics=['accuracy']` 参数[^4] #### 解决方案步骤 1. **确认验证集配置** 在 `model.fit()` 中显式指定验证集: ```python history = model.fit( X_train, y_train, validation_data=(X_val, y_val), # 必须提供验证数据 epochs=10 ) ``` 2. **检查历史记录的键名** 训练结束后打印所有可用键名: ```python print(history.history.keys()) # 可能输出:dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) ``` 3. **适配不同版本的键名** 根据输出结果选择正确的键名: ```python # 如果显示 'val_acc' 而非 'val_accuracy' val_acc = history.history['val_acc'] ``` 4. **修正回调函数配置** 在回调函数中使用正确的监测指标: ```python from tensorflow.keras.callbacks import EarlyStopping # 使用统一的键名(val_accuracy 或 val_acc) EarlyStopping(monitor='val_accuracy', patience=3) ``` 5. **确保模型正确编译** 编译时必须包含准确率指标: ```python model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 关键配置[^4] ``` #### 完整代码示例 ```python import tensorflow as tf # 模型构建 model = tf.keras.Sequential([...]) # 关键步骤:编译时声明准确率指标 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 必须包含[^4] # 训练时提供验证集 history = model.fit( train_data, epochs=10, validation_data=val_data # 显式指定验证集 ) # 正确获取验证准确率 if 'val_accuracy' in history.history: val_acc = history.history['val_accuracy'] elif 'val_acc' in history.history: val_acc = history.history['val_acc'] # 兼容旧版本 ``` #### 验证指标说明 | 指标类型 | 标准键名 | 备用键名 | |----------------|------------------|-------------| | 训练准确率 | `accuracy` | `acc` | | 验证准确率 | `val_accuracy` | `val_acc` | | 训练损失 | `loss` | - | | 验证损失 | `val_loss` | - | > 注意:TensorFlow 2.x 版本推荐使用 `accuracy`/`val_accuracy`,但部分旧代码可能使用缩写形式[^4]。 ### 相关问题 1. 如何在 TensorFlow 中自定义训练指标的名称? 2. 当验证集不可用时,如何监控模型性能? 3. TensorFlow 2.x 与 1.x 在回调函数使用上有哪些主要差异? 4. 如何解决 `KeyError: 'val_loss'` 类似错误? [^1]: 环境配置参考 [^2]: 模型压缩与部署示例 [^4]: 模型评估指标实现
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值