Logistics Regression算法小结

本文总结了Logistic Regression(LR)算法,包括模型原理、梯度下降优化以及为何不使用平方差作为损失函数。LR是分类模型,区别于线性回归,它利用sigmoid函数和交叉熵损失函数,而非线性回归的MSE。通过最大化似然概率,LR确保了模型的表达能力和损失函数的凸性。
摘要由CSDN通过智能技术生成

当目标变量时分类变量时,常常使用Logistic Regression(LR)算法。

例如:

  • 预测邮件是否为垃圾邮件(是垃圾邮件标记为1,否则为0)
  • 预测肿瘤是否为恶性的(是恶性的为1,否则为0)

模型

LR算法主要利用sigmoid函数,其图像如下:
在这里插入图片描述

模型的输入是 x i = ( x i 1 , x i 2 , . . . , x i m ) x_i=(x^1_i,x^2_i,...,x^m_i) xi=(xi1,xi2,...,xim) x i x_i xi是一个向量,其具体的计算方法如下:
h ( x ) = 1 1 + e − z , z = θ x + b h(x) = \frac{1}{1+e^{-z}}, \quad z = \theta x +b h(x)=1+ez1,z=θx+b
其中 θ = ( θ 1 , θ 2 , . . . , θ m ) , h ( x ) \theta = (\theta_1,\theta_2,...,\theta_m), h(x) θ=(θ1,θ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>