NLLLoss和CrossEntropyLoss的区别和联系

NLLLoss

NLLLoss的全称是Negative Log Likelihood Loss,也就是最大似然函数。

在图片进行单标签分类时,【注意NLLLoss和CrossEntropyLoss都是用于单标签分类,而BCELoss和BECWithLogitsLoss都是使用与多标签分类。这里的多标签是指一个样本对应多个label.】

假设输入m张图片,输出一个m*N的tensor,其中N是分类的个数,比如N为词表大小。比如,输入3张图片,分三类,最后的输出是一个 3 ∗ 3 3*3 33的tensor,举一个例子:

在这里插入图片描述
假设每一行对应一个样本在3个类别上的输出值,接下来我们可以使用Softmax,来得到每张图片的概率分布:
在这里插入图片描述
然后再对softmax的结果取对数:在这里插入图片描述
NLLLoss的结果就是把上面的输出log_result与Label对应的值拿出来,去掉负号再求和取平均。

假设target=[1,0,2],所以就是取出-1.3549, -3.2680, -0.5069,去掉负号再求和取平均。

具体结果如下:在这里插入图片描述
下面用NLLLoss来验证一下:
在这里插入图片描述

CrossEntropyLoss

CrossEntropyLoss就是交叉熵代价函数。

它就是把上面的我们执行的softmax+log+NLLLoss合并起来了,一步执行完。

我们可以来验证一下:

在这里插入图片描述
可以看到结果是一样的。

总结

总结: NLLLoss和CrossEntropyLoss计算损失函数的形式可以统一为:
l o s s

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>