NLLLoss
NLLLoss的全称是Negative Log Likelihood Loss,也就是最大似然函数。
在图片进行单标签分类时,【注意NLLLoss和CrossEntropyLoss都是用于单标签分类,而BCELoss和BECWithLogitsLoss都是使用与多标签分类。这里的多标签是指一个样本对应多个label.】
假设输入m张图片,输出一个m*N的tensor,其中N是分类的个数,比如N为词表大小。比如,输入3张图片,分三类,最后的输出是一个 3 ∗ 3 3*3 3∗3的tensor,举一个例子:

假设每一行对应一个样本在3个类别上的输出值,接下来我们可以使用Softmax,来得到每张图片的概率分布:

然后再对softmax的结果取对数:
NLLLoss的结果就是把上面的输出log_result与Label对应的值拿出来,去掉负号再求和取平均。
假设target=[1,0,2],所以就是取出-1.3549, -3.2680, -0.5069,去掉负号再求和取平均。
具体结果如下:
下面用NLLLoss来验证一下:

CrossEntropyLoss
CrossEntropyLoss就是交叉熵代价函数。
它就是把上面的我们执行的softmax+log+NLLLoss合并起来了,一步执行完。
我们可以来验证一下:

可以看到结果是一样的。
总结
总结: NLLLoss和CrossEntropyLoss计算损失函数的形式可以统一为:
l o s s

最低0.47元/天 解锁文章

1770

被折叠的 条评论
为什么被折叠?



