Storage模块负责了Spark计算过程中所有的存储,包括基于Disk的和基于Memory的。用户在实际编程中,面对的是RDD,可以将RDD的数据通过调用org.apache.spark.rdd.RDD#cache将数据持久化;持久化的动作都是由Storage模块完成的。包括Shuffle过程中的数据,也都是由Storage模块管理的。
各个主要类的功能说明:
1) org.apache.spark.storage.BlockManager: 提供了Storage模块与其他模块的交互接口,管理Storage模块。
2) org.apache.spark.storage.BlockManagerMaster: Block管理的接口类,主要通过调用org.apache.spark.storage.BlockManagerMasterActor来完成。
3) org.apache.spark.storage.BlockManagerMasterActor: 在Driver节点上的Actor,负责track所有Slave节点的Block的信息
4) org.apache.spark.storage.BlockManagerSlaveActor:运行在所有的节点上,接收来自org.apache.spark.storage.BlockManagerMasterActor的命令,比如删除某个RDD的数据,删除某个Block,删除某个Shuffle数据,返回某些Block的状态等。
5) org.apache.spark.storage.BlockManagerSource:负责搜集Storage模块的Metric信息,包括最大的内存数,剩余的内存数,使用的内存数和使用的Disk大小。这些是通过调用org.apache.spark.storage.BlockManagerMaster的getStorageStatus接口实现的。
6) org.apache.spark.storage.BlockObjectWriter:一个抽象类,可以将任何的JVM object写入外部存储系统。注意,它不支持并发的写操作。
7) org.apache.spark.storage.DiskBlockObjectWriter:支持直接写入一个文件到Disk,并且还支持文件的append。实际上它是org.apache.spark.storage.BlockObjectWriter的一个实现。现在下面的类在需要Spill数据到Disk时,就是通过它来完成的:
a) org.apache.spark.util.collection.ExternalSorter
b) org.apache.spark.shuffle.FileShuffleBlockManager
8) org.apache.spark.storage.DiskBlockManager:管理和维护了逻辑上的Block和存储在Disk上的物理的Block的映射。一般来说,一个逻辑的Block会根据它的BlockId生成的名字映射到一个物理上的文件。这些物理文件会被hash到由spark.local.dir(或者通过SPARK_LOCAL_DIRS来设置)上的不同目录中。
9) org.apache.spark.storage.BlockStore:存储Block的抽象类。现在它的实现有:
a) org.apache.spark.storage.DiskStore
b) org.apache.spark.storage.MemoryStore
c) org.apache.spark.storage.TachyonStore
10) org.apache.spark.storage.DiskStore:实现了存储Block到Disk上。其中写Disk是通过org.apache.spark.storage.DiskBlockObjectWriter实现的。
11) org.apache.spark.storage.MemoryStore:实现了存储Block到内存中。
12) org.apache.spark.storage.TachyonStore:实现了存储Block到Tachyon上。
13) org.apache.spark.storage.TachyonBlockManager:管理和维护逻辑上的Block和Tachyon文件系统上的文件之间的映射。这点和org.apache.spark.storage.DiskBlockManager功能类似。
14) org.apache.spark.storage.ShuffleBlockFetcherIterator:实现了取Shuffle的Blocks的逻辑,包括读取本地的和发起网络请求读取其他节点上的。具体实现可以参照《Shuffle模块详解》。