hadoop2 作业执行过程之yarn调度执行

11 篇文章 0 订阅

YARN是hadoop系统上的资源统一管理平台,其主要作用是实现集群资源的统一管理和调度(目前还不完善,只支持粗粒度的CPU和内存的的调配);

它的基本思想是将Mapreduce的jobtracker拆分成两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。其中ResourceManager负责整个系统资源的管理和分配,而ApplicationMaster则负责单个应用程序的管理;

YARN上的应用按其运行的生命周期的长短分为长应用和短应用。

  1.短应用通常是分析作业,作业从提交到完成,所耗时间是有限的,作业完成后,其占用的资源就会被释放,归还给YARN再次分配

  2.长应用通常是一些服务,启动后除非意外或人为终止,将一直运行下去。长应用通常长期占用集群上的一些资源,且运行期间对资源的需求也时常变化。

YARN在2.2.0版本以后增强了对长应用的支持。


用户向YARN提交一个应用程序后,YARN将分为两个阶段运行改应用程序:第一个阶段是启动ApplicationMaster;第二个阶段是由ApplicationMaster创建应用程序,为它申请资源,并监控它的整个运行过程,直到运行成功。

YARN的工作流程可以分为以下几个步骤:

  1.用户向YARN提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等;

  2.ResourceManager为该应用程序分配第一个Container,并与对应的NodeManager通信,要求它在整个Container中启动应用程序的ApplicationMaster;

  3ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManager查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7;

  4.ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源;

  5.一旦ApplicationMaster申请到资源后,则与对应的NodeManager通信,要求其启动任务;

  6.NodeManager为任务设置好运行环境(包括环境变量、jar包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务;

  7.各个任务通过某RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。

    在应用程序运行过程中,用户可以随时通过RPC向ApplicationMaster查询应用程序的当前运行状态;

  8.应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。

 

 


在单机程序设计中,为了快速处理一个大的数据集,通常采用多线程并行编程,大体流程如下:先有操作系统启动一个主线程,由它负责数据气氛、任务分配、子线程启动和销毁等工作,而各个子线程只负责计算自己的数据,当所有子线程处理完数据后,主线程再退出;

类比理解,YARN上的应用程序运行过程与之非常相近,只不过它是集群上的分布式并行编程。可以将YARN看做一个云操作系统,它负责为应用程序启动ApplicationMaster(相当于主线程),然后再由ApplicationMaster负责数据气氛、任务分配、启动和监控等工作,而由ApplicationMaster启动其他各个Node的Task(相当于子线程)仅负责计算任务,当所有任务计算完成后,ApplicationMaster认为应用程序运行完成,然后退出。

 


YARN上协议层面的通信动作

上图涉及三个RPC协议:

  • ApplicationClientProtocol: Client-RM之间的协议,主要用于应用的提交;

  • ApplicationMasterProtocol: AM-RM之间的协议,AM通过该协议向RM注册并申请资源;

  • ContainerManagementProtocol: AM-NM之间的协议,AM通过该协议控制NM启动容器。


YARN上程序层面的调用动作

可以看出,客户端的主要作用就是应用的提交和监控应用运行。


程序跟踪

http://www.cnblogs.com/admln/p/hadoop2-work-excute-submit.html 的

JobSubmitter.java
status = submitClient.submitJob( jobId, submitJobDir.toString(), job.getCredentials());

接起

复制代码
 1   @Override
 2   public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts)
 3   throws IOException, InterruptedException {
 4     
 5     addHistoryToken(ts);
 6     
 7     // Construct necessary information to start the MR AM
 8     ApplicationSubmissionContext appContext =
 9       createApplicationSubmissionContext(conf, jobSubmitDir, ts);
10 
11     // Submit to ResourceManager
12     try {
13       ApplicationId applicationId =
14           resMgrDelegate.submitApplication(appContext);
15 
16       ApplicationReport appMaster = resMgrDelegate
17           .getApplicationReport(applicationId);
18       String diagnostics =
19           (appMaster == null ?
20               "application report is null" : appMaster.getDiagnostics());
21       if (appMaster == null
22           || appMaster.getYarnApplicationState() == YarnApplicationState.FAILED
23           || appMaster.getYarnApplicationState() == YarnApplicationState.KILLED) {
24         throw new IOException("Failed to run job : " +
25             diagnostics);
26       }
27       return clientCache.getClient(jobId).getJobStatus(jobId);
28     } catch (YarnException e) {
29       throw new IOException(e);
30     }
31   }
复制代码

其中最重要的语句之一就是

ApplicationSubmissionContext appContext =
      createApplicationSubmissionContext(conf, jobSubmitDir, ts);

读注释可知它用于启动AppMaster前构造必要的信息

复制代码
  1   public ApplicationSubmissionContext createApplicationSubmissionContext(
  2       Configuration jobConf,
  3       String jobSubmitDir, Credentials ts) throws IOException {
  4     ApplicationId applicationId = resMgrDelegate.getApplicationId();
  5 
  6     // Setup resource requirements
  7     Resource capability = recordFactory.newRecordInstance(Resource.class);
  8     capability.setMemory(
  9         conf.getInt(
 10             MRJobConfig.MR_AM_VMEM_MB, MRJobConfig.DEFAULT_MR_AM_VMEM_MB
 11             )
 12         );
 13     capability.setVirtualCores(
 14         conf.getInt(
 15             MRJobConfig.MR_AM_CPU_VCORES, MRJobConfig.DEFAULT_MR_AM_CPU_VCORES
 16             )
 17         );
 18     LOG.debug("AppMaster capability = " + capability);
 19 
 20     // Setup LocalResources
 21     Map<String, LocalResource> localResources =
 22         new HashMap<String, LocalResource>();
 23 
 24     Path jobConfPath = new Path(jobSubmitDir, MRJobConfig.JOB_CONF_FILE);
 25 
 26     URL yarnUrlForJobSubmitDir = ConverterUtils
 27         .getYarnUrlFromPath(defaultFileContext.getDefaultFileSystem()
 28             .resolvePath(
 29                 defaultFileContext.makeQualified(new Path(jobSubmitDir))));
 30     LOG.debug("Creating setup context, jobSubmitDir url is "
 31         + yarnUrlForJobSubmitDir);
 32 
 33     localResources.put(MRJobConfig.JOB_CONF_FILE,
 34         createApplicationResource(defaultFileContext,
 35             jobConfPath, LocalResourceType.FILE));
 36     if (jobConf.get(MRJobConfig.JAR) != null) {
 37       Path jobJarPath = new Path(jobConf.get(MRJobConfig.JAR));
 38       LocalResource rc = createApplicationResource(defaultFileContext,
 39           jobJarPath, 
 40           LocalResourceType.PATTERN);
 41       String pattern = conf.getPattern(JobContext.JAR_UNPACK_PATTERN, 
 42           JobConf.UNPACK_JAR_PATTERN_DEFAULT).pattern();
 43       rc.setPattern(pattern);
 44       localResources.put(MRJobConfig.JOB_JAR, rc);
 45     } else {
 46       // Job jar may be null. For e.g, for pipes, the job jar is the hadoop
 47       // mapreduce jar itself which is already on the classpath.
 48       LOG.info("Job jar is not present. "
 49           + "Not adding any jar to the list of resources.");
 50     }
 51 
 52     // TODO gross hack
 53     for (String s : new String[] {
 54         MRJobConfig.JOB_SPLIT,
 55         MRJobConfig.JOB_SPLIT_METAINFO }) {
 56       localResources.put(
 57           MRJobConfig.JOB_SUBMIT_DIR + "/" + s,
 58           createApplicationResource(defaultFileContext,
 59               new Path(jobSubmitDir, s), LocalResourceType.FILE));
 60     }
 61 
 62     // Setup security tokens
 63     DataOutputBuffer dob = new DataOutputBuffer();
 64     ts.writeTokenStorageToStream(dob);
 65     ByteBuffer securityTokens  = ByteBuffer.wrap(dob.getData(), 0, dob.getLength());
 66 
 67     // Setup the command to run the AM
 68     List<String> vargs = new ArrayList<String>(8);
 69     vargs.add(Environment.JAVA_HOME.$() + "/bin/java");
 70 
 71     // TODO: why do we use 'conf' some places and 'jobConf' others?
 72     long logSize = TaskLog.getTaskLogLength(new JobConf(conf));
 73     String logLevel = jobConf.get(
 74         MRJobConfig.MR_AM_LOG_LEVEL, MRJobConfig.DEFAULT_MR_AM_LOG_LEVEL);
 75     MRApps.addLog4jSystemProperties(logLevel, logSize, vargs);
 76 
 77     // Check for Java Lib Path usage in MAP and REDUCE configs
 78     warnForJavaLibPath(conf.get(MRJobConfig.MAP_JAVA_OPTS,""), "map", 
 79         MRJobConfig.MAP_JAVA_OPTS, MRJobConfig.MAP_ENV);
 80     warnForJavaLibPath(conf.get(MRJobConfig.MAPRED_MAP_ADMIN_JAVA_OPTS,""), "map", 
 81         MRJobConfig.MAPRED_MAP_ADMIN_JAVA_OPTS, MRJobConfig.MAPRED_ADMIN_USER_ENV);
 82     warnForJavaLibPath(conf.get(MRJobConfig.REDUCE_JAVA_OPTS,""), "reduce", 
 83         MRJobConfig.REDUCE_JAVA_OPTS, MRJobConfig.REDUCE_ENV);
 84     warnForJavaLibPath(conf.get(MRJobConfig.MAPRED_REDUCE_ADMIN_JAVA_OPTS,""), "reduce", 
 85         MRJobConfig.MAPRED_REDUCE_ADMIN_JAVA_OPTS, MRJobConfig.MAPRED_ADMIN_USER_ENV);   
 86 
 87     // Add AM admin command opts before user command opts
 88     // so that it can be overridden by user
 89     String mrAppMasterAdminOptions = conf.get(MRJobConfig.MR_AM_ADMIN_COMMAND_OPTS,
 90         MRJobConfig.DEFAULT_MR_AM_ADMIN_COMMAND_OPTS);
 91     warnForJavaLibPath(mrAppMasterAdminOptions, "app master", 
 92         MRJobConfig.MR_AM_ADMIN_COMMAND_OPTS, MRJobConfig.MR_AM_ADMIN_USER_ENV);
 93     vargs.add(mrAppMasterAdminOptions);
 94     
 95     // Add AM user command opts
 96     String mrAppMasterUserOptions = conf.get(MRJobConfig.MR_AM_COMMAND_OPTS,
 97         MRJobConfig.DEFAULT_MR_AM_COMMAND_OPTS);
 98     warnForJavaLibPath(mrAppMasterUserOptions, "app master", 
 99         MRJobConfig.MR_AM_COMMAND_OPTS, MRJobConfig.MR_AM_ENV);
100     vargs.add(mrAppMasterUserOptions);
101     
102     vargs.add(MRJobConfig.APPLICATION_MASTER_CLASS);
103     vargs.add("1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR +
104         Path.SEPARATOR + ApplicationConstants.STDOUT);
105     vargs.add("2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR +
106         Path.SEPARATOR + ApplicationConstants.STDERR);
107 
108 
109     Vector<String> vargsFinal = new Vector<String>(8);
110     // Final command
111     StringBuilder mergedCommand = new StringBuilder();
112     for (CharSequence str : vargs) {
113       mergedCommand.append(str).append(" ");
114     }
115     vargsFinal.add(mergedCommand.toString());
116 
117     LOG.debug("Command to launch container for ApplicationMaster is : "
118         + mergedCommand);
119 
120     // Setup the CLASSPATH in environment
121     // i.e. add { Hadoop jars, job jar, CWD } to classpath.
122     Map<String, String> environment = new HashMap<String, String>();
123     MRApps.setClasspath(environment, conf);
124     
125     // Setup the environment variables for Admin first
126     MRApps.setEnvFromInputString(environment, 
127         conf.get(MRJobConfig.MR_AM_ADMIN_USER_ENV));
128     // Setup the environment variables (LD_LIBRARY_PATH, etc)
129     MRApps.setEnvFromInputString(environment, 
130         conf.get(MRJobConfig.MR_AM_ENV));
131 
132     // Parse distributed cache
133     MRApps.setupDistributedCache(jobConf, localResources);
134 
135     Map<ApplicationAccessType, String> acls
136         = new HashMap<ApplicationAccessType, String>(2);
137     acls.put(ApplicationAccessType.VIEW_APP, jobConf.get(
138         MRJobConfig.JOB_ACL_VIEW_JOB, MRJobConfig.DEFAULT_JOB_ACL_VIEW_JOB));
139     acls.put(ApplicationAccessType.MODIFY_APP, jobConf.get(
140         MRJobConfig.JOB_ACL_MODIFY_JOB,
141         MRJobConfig.DEFAULT_JOB_ACL_MODIFY_JOB));
142 
143     // Setup ContainerLaunchContext for AM container
144     ContainerLaunchContext amContainer =
145         ContainerLaunchContext.newInstance(localResources, environment,
146           vargsFinal, null, securityTokens, acls);
147 
148 
149     // Set up the ApplicationSubmissionContext
150     ApplicationSubmissionContext appContext =
151         recordFactory.newRecordInstance(ApplicationSubmissionContext.class);
152     appContext.setApplicationId(applicationId);                // ApplicationId
153     appContext.setQueue(                                       // Queue name
154         jobConf.get(JobContext.QUEUE_NAME,
155         YarnConfiguration.DEFAULT_QUEUE_NAME));
156     appContext.setApplicationName(                             // Job name
157         jobConf.get(JobContext.JOB_NAME,
158         YarnConfiguration.DEFAULT_APPLICATION_NAME));
159     appContext.setCancelTokensWhenComplete(
160         conf.getBoolean(MRJobConfig.JOB_CANCEL_DELEGATION_TOKEN, true));
161     appContext.setAMContainerSpec(amContainer);         // AM Container
162     appContext.setMaxAppAttempts(
163         conf.getInt(MRJobConfig.MR_AM_MAX_ATTEMPTS,
164             MRJobConfig.DEFAULT_MR_AM_MAX_ATTEMPTS));
165     appContext.setResource(capability);
166     appContext.setApplicationType(MRJobConfig.MR_APPLICATION_TYPE);
167     return appContext;
168   }
复制代码

其中

ApplicationId applicationId = resMgrDelegate.getApplicationId();

就对应上图中的第一步,向ResourceManager申请ID;
其中包括了内存、CPU的分配,资源(程序、配置等)路径的配置,启动AppMaster的命令,检查java环境等等;

这些就对应上图中的第二步,初始化AM的配置;

而submitJob()方法中最重要语句之二就是

ApplicationId applicationId =
          resMgrDelegate.submitApplication(appContext);

它用于将AM提交到RM,对应于上图中的第三步;
submitApplication()方法是由YarnClientImpl.java实现的,即:

复制代码
 1   @Override
 2   public ApplicationId
 3       submitApplication(ApplicationSubmissionContext appContext)
 4           throws YarnException, IOException {
 5     ApplicationId applicationId = appContext.getApplicationId();
 6     appContext.setApplicationId(applicationId);
 7     SubmitApplicationRequest request =
 8         Records.newRecord(SubmitApplicationRequest.class);
 9     request.setApplicationSubmissionContext(appContext);
10     rmClient.submitApplication(request);
11 
12     int pollCount = 0;
13     while (true) {
14       YarnApplicationState state =
15           getApplicationReport(applicationId).getYarnApplicationState();
16       if (!state.equals(YarnApplicationState.NEW) &&
17           !state.equals(YarnApplicationState.NEW_SAVING)) {
18         break;
19       }
20       // Notify the client through the log every 10 poll, in case the client
21       // is blocked here too long.
22       if (++pollCount % 10 == 0) {
23         LOG.info("Application submission is not finished, " +
24             "submitted application " + applicationId +
25             " is still in " + state);
26       }
27       try {
28         Thread.sleep(statePollIntervalMillis);
29       } catch (InterruptedException ie) {
30       }
31     }
32 
33 
34     LOG.info("Submitted application " + applicationId + " to ResourceManager"
35         + " at " + rmAddress);
36     return applicationId;
37   }
复制代码

这个方法主要构造了一个请求,并将这个请求调用相关协议发出,即:

rmClient.submitApplication(request);

客户端类结构:


到这里客户端除了查询监控基本上没有什么动作了,之后就按照上面的协议通信图来进行了。

由于YARN的各种协议、接口、封装等,就简单从协议层面分析大概流程走向

(在查看协议代码的时候经常会看到google的字样,有点老祖宗的感觉)

客户端和RM之间的协议类是ApplicationClientProtocol

客户端和RM之间的通信动作包括:

1.获取应用ID

      public abstract void getNewApplication(
          com.google.protobuf.RpcController controller,
          org.apache.hadoop.yarn.proto.YarnServiceProtos.GetNewApplicationRequestProto request,
          com.google.protobuf.RpcCallback<org.apache.hadoop.yarn.proto.YarnServiceProtos.GetNewApplicationResponseProto> done);

2.把应用提交到RM上

      public abstract void submitApplication(
          com.google.protobuf.RpcController controller,
          org.apache.hadoop.yarn.proto.YarnServiceProtos.SubmitApplicationRequestProto request,
          com.google.protobuf.RpcCallback<org.apache.hadoop.yarn.proto.YarnServiceProtos.SubmitApplicationResponseProto> done);

具体步骤:

  1. 客户端通过getNewApplication方法从RM上获取应用ID;

  2. 客户端将应用相关的运行配置封装到ApplicationSubmissionContext中,通过submitApplication方法将应用提交到RM上;

  3. RM根据ApplicationSubmissionContext上封装的内容启动AM;

  4. 客户端通过AM或RM获取应用的运行状态,并控制应用的运行过程。

在获取应用程序ID后,客户端封装应用相关的配置到ApplicationSubmissionContext中,通过submitApplication方法提交到RM上。

ApplicationSubmissionContext主要包括如下几个部分:

  • applicationId: 通过getNewApplication获取的应用ID;

  • applicationName: 应用名称,将显示在YARN的web界面上;

  • applicationType: 应用类型,默认为”YARN”;

  • priority: 应用优先级,数值越小,优先级越高;

  • queue: 应用所属队列,不同应用可以属于不同的队列,使用不同的调度算法;

  • unmanagedAM: 布尔类型,表示AM是否由客户端启动(AM既可以运行在YARN平台之上,也可以运行在YARN平台之外。运行在YARN平台之上的AM通过RM启动,其运行所需的资源受YARN控制);

  • cancelTokensWhenComplete: 应用完成后,是否取消安全令牌;

  • maxAppAttempts: AM启动失败后,最大的尝试重启次数;

  • resource: 启动AM所需的资源(虚拟CPU数/内存),虚拟CPU核数是一个归一化的值;

  • amContainerSpec: 启动AM容器的上下文,主要包括如下内容:

  • tokens: AM所持有的安全令牌;

  • serviceData: 应用私有的数据,是一个Map,键为数据名,值为数据的二进制块;

  • environment: AM使用的环境变量;

  • commands: 启动AM的命令列表;

  • applicationACLs:应程序访问控制列表;

  • localResource: AM启动需要的本地资源列表,主要是一些外部文件、压缩包等。


之后就是RM创建AM,并执行某些动作了

AM的主要功能是按照业务需求,从RM处申请资源,并利用这些资源完成业务逻辑。因此,AM既需要与RM通信,又需要与NM通信。这里涉及两个协议,分别是AM-RM协议(ApplicationMasterProtocol)和AM-NM协议(ContainerManagementProtocol)

首先是AM-RM

AM-RM之间使用ApplicationMasterProtocol协议进行通信,该协议提供如下几个方法:

复制代码
  //向RM注册AM    
  public abstract void registerApplicationMaster(
        com.google.protobuf.RpcController controller,
        org.apache.hadoop.yarn.proto.YarnServiceProtos.RegisterApplicationMasterRequestProto request,
        com.google.protobuf.RpcCallback<org.apache.hadoop.yarn.proto.YarnServiceProtos.RegisterApplicationMasterResponseProto> done);
复制代码
复制代码
   //告知RM,应用已结束
    public abstract void finishApplicationMaster(
        com.google.protobuf.RpcController controller,
        org.apache.hadoop.yarn.proto.YarnServiceProtos.FinishApplicationMasterRequestProto request,
        com.google.protobuf.RpcCallback<org.apache.hadoop.yarn.proto.YarnServiceProtos.FinishApplicationMasterResponseProto> done);
复制代码
复制代码
   //向RM申请/归还资源,维持心跳
  public abstract void allocate(
        com.google.protobuf.RpcController controller,
        org.apache.hadoop.yarn.proto.YarnServiceProtos.AllocateRequestProto request,
        com.google.protobuf.RpcCallback<org.apache.hadoop.yarn.proto.YarnServiceProtos.AllocateResponseProto> done);
复制代码

客户端向RM提交应用后,RM会根据提交的信息,分配一定的资源来启动AM,AM启动后调用ApplicationMasterProtocol协议的registerApplicationMaster方法主动向RM注册。完成注册后,AM通过ApplicationMasterProtocol协议的allocate方法向RM申请运行任务的资源,获取资源后,通过ContainerManagementProtocol在NM上启动资源容器,完成任务。应用完成后,AM通过ApplicationMasterProtocol协议的finishApplicationMaster方法向RM汇报应用的最终状态,并注销AM。

需要注意的是,ApplicationMasterProtocol#allocate()方法还兼顾维持AM-RM心跳的作用,因此,即便应用运行过程中有一段时间无需申请任何资源,AM都需要周期性的调用相应该方法,以避免触发RM的容错机制。

其次是AM-NM

AM通过ContainerManagementProtocol协议与NM交互,包括3个方面的功能:启动容器、查询容器状态、停止容器

复制代码
//启动容器      
public abstract void startContainers(
          com.google.protobuf.RpcController controller,
          org.apache.hadoop.yarn.proto.YarnServiceProtos.StartContainersRequestProto request,
          com.google.protobuf.RpcCallback<org.apache.hadoop.yarn.proto.YarnServiceProtos.StartContainersResponseProto> done);
复制代码
复制代码
//查询容器状态      
public abstract void getContainerStatuses(
          com.google.protobuf.RpcController controller,
          org.apache.hadoop.yarn.proto.YarnServiceProtos.GetContainerStatusesRequestProto request,
          com.google.protobuf.RpcCallback<org.apache.hadoop.yarn.proto.YarnServiceProtos.GetContainerStatusesResponseProto> done);
复制代码
复制代码
//停止容器      
public abstract void stopContainers(
          com.google.protobuf.RpcController controller,
          org.apache.hadoop.yarn.proto.YarnServiceProtos.StopContainersRequestProto request,
          com.google.protobuf.RpcCallback<org.apache.hadoop.yarn.proto.YarnServiceProtos.StopContainersResponseProto> done);
复制代码

AM通过ContainerManagementProtocol# startContainers()方法启动一个NM上的容器,AM通过该接口向NM提供启动容器的必要配置,包括分配到的资源、安全令牌、启动容器的环境变量和命令等,这些信息都被封装在StartContainersRequest中。NM收到请求后,会启动相应的容器,并返回启动成功的容器列表和失败的容器列表,同时还返回其上相应的辅助服务元数据


转自:http://www.cnblogs.com/admln/p/hadoop2-work-excute-yarn.html


至此,就剩下NM上container的MAP和REDUCE过程了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值